

Inventory of estimates of ENMs and nano-enabled products value chain

Deliverable Number:	D4.1
Work Package Number:	WP4
Lead Beneficiary:	TNO Netherlands Organisation for Applied Scientific Research
Dissemination Level:	Public (PU)
Delivery Date:	01/03/2017

Partner	Partner short	Role in deliverable
No.	name	
3	LEITAT	Drafting specific chapters of this report
18	EMPA	Drafting specific chapters of this report
20	ETSS	Review of the deliverable report
21	TNO	Lead author and editor of this deliverable report

This report was prepared under contract from the European Commission

Contract n° 646002, Horizon 2020

The content of this document does not necessarily reflect the official opinions of the European Commission or other institutions of the European Union.

Project acronym: Project full title: Research ID Start of the project: Duration: Project coordinator: Project website	NanoFASE Nanomaterial Fate and Speciation in the Environment E-2356-2016 1 Sept 2015 4 years Dr. Claus Svendsen, CEH, NERC (National Environmental Research Council), Wallingford, UK. www.NanoFASE.eu
Deliverable title:	D4.1 Inventory of estimates of ENMs and nano-enabled products value chain
Deliverable n°:	D4.1
Nature of the deliverable:	Report
Dissemination level:	Public (PU)
Public Document Title	NanoFASE Inventory of estimates of ENMs and nano-enabled products value chain
Lead beneficiary:	21 - TNO Netherlands Organisation of Applied Scientific Research
Lead author:	Jeroen Kuenen, Jeroen.Kuenen@tno.nl, tel +31 888662054
Contributing authors:	Véronique Adam (EMPA)
Ū	Vicenç Pomar Portillo (LEITAT)
Reviewers:	Fadri Gottschalk (ETSS)
Citation:	Kuenen J., et al. Inventory of estimates of ENMs and nano- enabled products value chain. H2020 NanoFASE Project Deliverable D4.1. March 2017.
Due date of deliverable:	Month n° 18 Month n° 18

Submitted to coordinator: Month n° 18

Document history:

Version	Status	Date	Author(s)/Reviewer(s)
1.0	Initial draft	17/02/2017	First draft circulated to partners and reviewers for comments
FINAL	Final	01/03/2017	Final draft circulated to partners and NanoFASE project leaders for submission to EC

ABSTRACT

Releases of engineered nanomaterials (ENMs) to the environment may have harmful effects on human health. To get an understanding of the fate of engineered nanomaterials in our environment, modelling tools are used which need information on the release patterns of ENMs as input. This study describes a first country-specific ENM release model for Europe. Releases are quantified for the different stages (production, manufacturing, consumption of ENMs), and also the ENM flows into waste management (e.g. landfilling, recycling, incineration) are improved.

A first step is to estimate production of ENMs, as well their incorporation into products (manufacturing) and consumption of these products. Available estimates of European production of different ENMs often show a wide variation, indicating the large uncertainties about the actual production rates. By comparing different estimates and discussion with experts we have selected the most likely values. For manufacturing and consumption, it is assumed that all ENMs produced in Europe are also manufactured and consumed in Europe (no net import/export from the EU) in the absence of any specific data on this. Also, the ENMs are broken down to various product categories where they are used. Then, the European production, manufacturing and consumption are broken down to country level by using proxy parameters, being production facilities, specific expenditure on products such as sunscreens, but also more generic proxies such as GDP or population. Finally, releases to the environmental compartments and end-of-life pathways are estimated.

Separately in this study, the releases of ENM waste compartments and end-of-life routes were better quantified and broken down to the country level. This led to an improved estimation of release factors and fate of the ENMs resulting from the production and use of them.

In the quantification of releases of ENM to the environment, significant uncertainties exist. This starts with the uncertainty in the amount of ENMs produced, in some cases multiple orders of magnitude. All the steps in the methodology to refine and detail the ENM production, manufacturing, consumption, end-of-life pathways and environmental releases also have their associated uncertainties, therefore the results should be regarded as a first estimate. During the course of the NanoFASE project, these estimates will be further improved and refined.

A next step is to incorporate the updated release factors into the PMC model, which will be further spatially detailed to allow ENM releases to be used as input for ENM fate modellers looking at specific geographical areas.

Table of content

1.	INTE	RODUCTION AND MAIN OBJECTIVE	. 8			
	1.1.	Introduction	. 8			
	1.2.	What's new in this report	.9			
	1.3.	Goal of this work	.9			
2.	MET	THODOLOGY FOR PMC	10			
	2.1.	Methodology for the release model1	10			
	2.2.	Total ENM volumes produced, manufactured and consumed in Europe1	1			
	2.3. ENMs	Information about the expected release forms from production, manufacturing and use on 18	of			
	2.4.	Trends in ENM volumes across Europe2	22			
	2.5.	Methodology for downscaling to ENM product level2	23			
	2.6.	Methodology for downscaling to country level	25			
	2.7.	Quantification of releases of ENMs from production, manufacturing and consumption2	29			
3.	MET	THODS FOR WASTE PATHWAYS: RECYCLING, LANDFILLS AND INCINERATION	30			
	3.1.	System definition and general methodology	30			
	3.2.	Data collection and quality assessment	31			
	3.3.	Material flow assessment	34			
4.	RES	ULTS3	35			
	4.1.	Production, manufacturing and consumption of engineered nanomaterials	35			
	4.2.	Recycling, landfills and incineration of engineered nanomaterial products	39			
5.	DISC	CUSSION5	54			
6.	CON	ICLUSION AND NEXT STEPS5	55			
7.	REFI	REFERENCES				

Index of appendixes

Appendix 1: Smelter and refined copper production volumes distribution per country, and
derived distribution of nano-CuO and nano-Cu ⁰ production per country
Appendix 2: Release factors adopted for this inventory, per ENM, stage and application 60
Appendix 3: Decision tree for assessing the quality of the references used for allocations to
product applications65
Appendix 4: References used for the management of the waste categories
Appendix 5: Municipal waste management in Europe in 2013 (adapted from Eurostat)75
Appendix 6: Modelling results - masses of carbon black ENM entering technical and
environmental compartments76
Appendix 7: Modelling results – Fractions of carbon black ENM entering landfilling, incineration
and recycling 116

Index of tables

Table 1: Selected estimates of ENM production (ton per year) in Europe reported in literature 13
Table 2 Total production, manufacturing and consumption amounts for Europe adopted in this
study17
Table 3: Product allocation for carbon black, for Europe 24
Table 4: Product allocation of nano-CuO and nano-Cu ⁰
Table 5: Overview of proxy parameters used to distribute manufacturing and consumption to the
level of individual countries in Europe 27
Table 6: Pedigree matrix used for the quality assessment of the references used for waste
collection and treatment
Table 7: Allocation of the coefficients of variation
Table 8: Allocation of carbon black ENM to applications and waste categories. EoL: End of Life;
ELV: End-of-Life Vehicle; CDW: Construction and Demolition Waste; WEEE: Waste
Electrical and Electronic Equipment 40
Table 9: Transfer coefficients of carbon black to waste categories 40
Table 10: Allocation of nano copper to applications and waste categories. WEEE: Waste electronic
and electrical waste; CDW: Construction and demolition waste; ELV: End-of-life
vehicles; LHA: Large household appliances42
Table 11: Transfer coefficients of nano copper to waste categories
Table 12: Allocation of nano Ag to applications and waste categories. WEEE: Waste electronic and
electrical waste; CDW: Construction and demolition waste; ELV: End-of-life vehicles;
LHA: Large household appliances 44
Table 13: Transfer coefficients of nano Ag to waste categories
Table 14: Allocation of nano TiO_2 to applications and waste categories. WEEE: Waste electronic
and electrical waste; CDW: Construction and demolition waste; ELV: End-of-life
vehicles; LHA: Large household appliances
Table 15: Transfer coefficients of nano TiO_2 to waste categories
Table 16: Allocation of nano ZnO to applications and waste categories. WEEE: Waste electronic
and electrical waste; CDW: Construction and demolition waste
Table 17: Transfer coefficients of nano ZnO to waste categories

Index of figures

Figure 1: Example of a material flow diagram, for photostable ${\rm TiO_2}$ (taken from Gottschalk et al.
2015a)
Figure 2: Schematic illustration of the methodology to estimate specific ENM releases from
production, manufacturing and consumption at country level
Figure 3: European nanosized TiO_2 market for 2014-2022, taken from Allied Market Research
(2016)
Figure 4: Possible forms of NMs released during the use of these products that can end up into
the different environmental compartments. Adapted from Vílchez et al. (2015) 19
Figure 5: Role of WP4 in the assessment of the ENMs forms of exposure 20
Figure 6: Projected production of nano-TiO ₂ , nano-ZnO (left y-axis), nano-Cu and nano-Ag (right
y-axis) according to Allied Market Research (2016)
Figure 7: Distribution of ENM manufacturing/consumption over the main
products/applications25
Figure 8: Definition of the system. PC: Product category; PA: Product application; WC: Waste
category. CDW: Construction and demolition waste; RW: Reactive waste
Figure 9: Calculation of PA distributions in each PC
Figure 10: Calculation of the transfer coefficients
Figure 11: Probability distribution and uncertainty of the TCs
Figure 12: Production, manufacturing and consumption of the 5 ENMs covered by this study for
each individual European country
Figure 13: Releases of ENMs to different environmental compartments and to end-of-life routes,
for individual European countries (combined releases for production, manufacturing
and consumption)
Figure 13: Carbon black ENM waste stream shares of landfilling, incineration and recycling in
European countries 49
Figure 14: Cu ENM waste stream shares of landfilling, incineration and recycling in European
countries
Figure 15: Ag ENM waste stream shares of landfilling, incineration and recycling in European
countries
Figure 16: TiO_2 ENM waste stream shares of landfilling, incineration and recycling in European
countries
Figure 17: ZnO ENM waste stream shares of landfilling, incineration and recycling in European
countries

1. INTRODUCTION AND MAIN OBJECTIVE

1.1. Introduction

Releases of engineered nanomaterials (ENMs) into the environment may have harmful impact on the environment and human health (Gottschalk et al. 2013). To assess this impact, knowledge about the actual concentrations of ENMs in the different environmental compartments is needed. However, since measurements of concentrations of ENMs in the ambient environment are difficult due to the low concentrations of ENMs (e.g. Gottschalk et al. 2013b; von der Kammer et al. 2012), environmental concentrations of ENMs are modelled to get a picture of how ENMs move through the environment. An input to such models and a prerequisite for an environmental assessment of the fate of ENMs in the environmental compartments.

Since the concerns of the possible harmful effects of ENMs to the environment are growing with the increased use and release of nanomaterials, several studies have addressed the issue of quantifying these effects (e.g. Gottschalk et al. 2013b, Boxall et al. 2007, Gottschalk et al. 2009, Keller et al. 2013, Sun et al. 2014). Given the limited information on the releases and dispersion of ENMs through the environment and the difficulty in measuring actual man-made nanomaterial concentrations in the ambient environment, most studies use modelling approaches to assess the issue (Sun et al. 2016).

Most of these models attempt to quantify the values and major uncertainties about the annual fluxes and related environmental emissions of ENM into the environment. Due to missing data time and space dependencies (variability) are often ignored and the whole ENM product life cycle release broken down to constant annual release and fate figures. First geographic variation on ENM in the environment has been modelled in Swiss river studies (e.g. Gottschalk et al. 2011). First release time dependencies have been successfully performed in dynamic flow modelling for ENM release and fate in waste incineration processes (Walser & Gottschalk 2014). Dynamic modelling of time influences on generic ENM release and fate for human and environment is in its earliest children's shoes (e.g., Sun et al. 2016; Giese et al. 2017).

Apart from methodological and data requirements there is no doubt that there is a certain release of ENMs in the environment assumed, from which a certain flow into different environmental compartments is calculated.

Improved ENM modelling tools are developed in NanoFASE which predict the releases of ENM to the environment, and methods and tools are being developed to quantify ENM concentrations in water, air and soil. These models explicitly combine time- and space variation input of ENM releases in order to run.

Several studies have aimed to quantify the production amounts of different ENMs for Europe and global (e.g. Piccinno et al. 2012, Holden et al. 2014, Sun et al. 2016). These estimates show large variations, which is illustrative for the uncertainties in these estimates. In this study, the aim is not to repeat these assessments but to select the best estimates available and build up an application- and country specific release model for the selected ENMs.

1.2. What's new in this report

In NanoFASE, we present the first spatially resolved European ENM release model. As a start this study builds on earlier estimates of ENM releases for Europe as a whole and provides an update with the latest available information from literature, industry and other expert sources. Furthermore, the NanoFASE release model will keep track of and will include a differentiation of the chemical/physical state of the ENM in question at points of release, which has not been undertaken at this level so far. Another new element in this study is the way how European figures for the production, manufacturing, consumption and waste management are further detailed to the country level. A next step (but this is beyond the scope of D4.1) will be to allocate these to more exact locations as input to the environmental fate modellers. Thus, this ENM release model does not end at the administrative level of country borders but allocates all release points to specific locations.

In addition, this report will address further improvements and quantification of the flows of ENMs into the different end-of-life pathways i.e. recycling, incineration and landfills. Moreover, a better specification of the product categories is provided, a remarkable feature in comparison with other existing models. The nano-applications specific to each product were defined, enabling a better tracking of the ENM fate towards waste treatment. This will also enable, in future work, a better assessment of their fate and behaviour in the waste treatment processes.

In terms of the ENMs covered, this report addresses the nanomaterials titanium dioxide, zinc oxide, silver, carbon black and copper.

1.3. Goal of this work

The main objectives of the work described in this deliverable report are:

- To provide a first release model for ENMs and nano-enabled products. This will take the form of country specific production, manufacturing and consumption for each ENM and for its detailed applications.
- To better specify the product categories and better tracking of ENM fate towards waste treatment.

2. METHODOLOGY FOR PMC

2.1. Methodology for the release model

This ENM release model for Europe is constructed using a top-down approach. We started from the material flow diagrams for different engineered nanomaterials as they are presented in Gottschalk et al. (2015a). An example is shown in Figure 1. As for the model, we focus on the technical compartments (left side of the box). This chapter describes the estimation of the ENM flows from production, manufacturing and consumption (PMC box). Also, the initial releases of ENMs to the various environmental compartments and end-of-life routes are quantified, while Chapter 4 is about improving the release factors and the end-of-life pathways for the ENMs.

The production, manufacturing and consumption (PMC) box is the initial source of ENMs in the environment, as illustrated by Figure 1. Direct release to natural compartments (atmosphere, fresh and sea waters) from PMC may however be limited and the majority of the mass (be it in a different release form) may then be passed on to technical compartments. In Figure 1, technical compartments are waste water, sewage treatment and waste incineration and these represent indirect release sources. Release from recycling and landfill processes is not considered and as far as we currently may assume not relevant. what can be underscored in pure release modelling is that due to missing data no (or almost no) feedback flows such as for example bioaccumulation and real recycling and reuse of ENM and its products are considered.

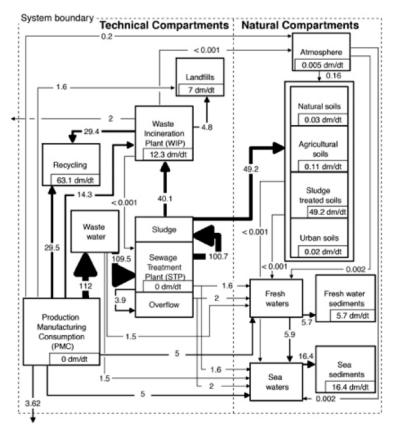


Figure 1: Example of a material flow diagram, for photostable TiO₂ (taken from Gottschalk et al. 2015a)

Figure 2 shows the different steps of the methodology. The first step is about quantifying the total production for the selected ENMs for Europe, where Europe is considered as the EU28 plus Norway

and Switzerland, thus making up a total of 30 countries. For Europe as a whole, the amount of ENM produced is expected to be of the same order as the amount of ENMs used in ENM-containing product manufacturing/formulation and the amount of ENM present in ENM-containing products consumed in Europe. At this stage, it is assumed that no significant ENM transfer takes place between Europe and other regions and that there is no accumulation of ENMs, as there are no indications for large trade or accumulation. This implies that all ENMs that are produced in Europe are also manufactured into products/applications in Europe, and their consumption also takes place in Europe.

The second step concerns downscaling to the level of individual products and appliances in which the produced ENMs are integrated. In the third step, for each ENM and individual appliance the production, manufacturing and consumption are downscaled to the level of each of the 30 individual countries.

Finally, the last step concerns the estimation of the releases of ENMs to the different environmental compartments (air, soil, waste water, surface water) and the amounts going into end-of-life routes such as incineration, landfilling, recycling or others after the consumption stage.

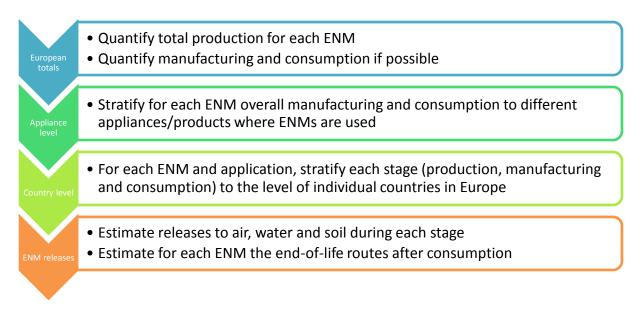


Figure 2: Schematic illustration of the methodology to estimate specific ENM releases from production, manufacturing and consumption at country level

For each of the steps included, the sections below provide more details for the methodology used.

2.2. Total ENM volumes produced, manufactured and consumed in Europe

There are several papers published in the last years that present estimates of ENM releases globally, for Europe or for other world regions. Since these papers have rather thoroughly reviewed all the available literature and other information, we will use this information and focus most of our attention on the downscaling and release quantification.

Despite that various studies over the last years have addressed the issue of total ENM production volumes on an annual basis, there is a very wide spread in the numbers reported, as illustrated e.g. by Sun et al. (2016).

2.2.1. Overview of available literature

To collect data on ENM production, manufacturing and consumption in Europe multiple literature sources have been searched. This search builds on work performed by ETSS and EMPA in Switzerland in earlier studies, reported in various papers e.g. Sun et al. (2014), Gottschalk et al. (2015a), Sun et al. (2016). In these papers, due to the absence of detailed information on emissions and flows of engineered nanomaterials, the authors use probabilistic modelling of the emissions of engineered nanomaterials to predict these flows going into the environment. Their models build on a collection of available estimates of ENM production in Europe. For the production, expert judgement on the 'degree of belief' for each study is made, and statistical methods are used to extract an estimate for the production. As highlighted in the papers, the currently estimated production amounts of the different ENMs provide a wide range of values, which is illustrated in Table 1 with the different values with 80% degree of belief (DoB) as reported in Sun et al. (2016) for Europe.

Also, other papers have been comparing production estimates for ENMs. Holden et al. (2014) reports suggested nanomaterial production values on the global scale. This paper also includes the values suggested by the European Commission in their staff working document on nanomaterials (EC, 2012). These are based largely on a 2010 SRI market report and on the volumes reported in the REACH submissions.

Table 1: Selected estimates of ENM production (ton per year) in Europe reported in literature

	TiO ₂	ZnO	Ag	Cu(OH) ₂	Carbon
			•	and oxides	black
Sun et al. (2016), 80%	246	2,151	15		
DoB values	55 - 3,000	5.5 – 28,000	0.6 - 55		
	13,360 - 14,080	5,040 - 5,440	1.2 - 41		
	13,398	1,815	92		
	8,674 - 42,256		58 - 72		
	90,216		1		
			3.1 – 22		
Mean:	38,900	7,260	50.1		
Piccinno et al. (2012): <i>Europe</i>	550	55	5.5		
EC (2012): global	10,000	8,000	22	200-250	9.6 mln
Keller et al. (2013):	88,000	34,000	452	200	
global	-, -	. ,			
Holden et al. (2014):	>30,000	8,000	>70	>>150	>= 10 mln
global	10.407	4.700	20	45	
Allied Market Research	10,487	4,768	38	45	
(2016), <i>European</i>					
production for 2014					
Allied Market Research	15,304	6,901	58	78	
(2016), European					
production for 2016					
Ricardo (2016),	92,000	200	100		
Produced/imported in					
EU in 2015					
PRECHEZA 2016: global	45,900				
in 2012/2014					
Nanowerk (2012),	50,000				
global production in					
2010					
TDMA (2010), global	<= 50,000				
production					
Weir et al. (2012) based	5,000				
on EPA (2009), Global					
production in 2010					
Future Markets Inc.		29,000			
(2014), Global					
production in 2009					
Projected worldwide		34,000			
production in 2015					
Total production		10,000 –			
capacity of European		20,000			
producers in 2014					
IARC (2010), 2005 CB					1.4 mln
plant capacities totalled					
for EU(28)+					

Nano Titanium dioxide

The EC (2012) noted an issue since the SRI market report showed 10 kton nano-TiO₂ being produced globally, however from the filed REACH dossiers a significantly higher number could be extracted. Therefore, the Holden et al. (2014) estimate concluded on a higher production compared to the EC (2012).

Information from other sources suggest the overall TiO₂ (bulk, not only nano TiO₂) production to be in the order of 5 Mton per year (e.g. <u>http://www.essentialchemicalindustry.org/chemicals/titanium-dioxide.html</u>, <u>http://www.marketresearchstore.com/news/global-titanium-dioxide-market-156</u>, <u>http://www.cristal.com/products-and-services/ultrafine-and-specialty-tio2/Pages/uf-tio2-specific-information.aspx</u>).

The nano-sized TiO₂ is estimated to be around 1% or less of the 5 million ton, which would equal a maximum of around 50,000 ton annually (TDMA, 2010). Recognizing that in a growing market this value is likely higher in 2012-2014, the value is in the same order of magnitude of the previously mentioned production amounts. In the production of nanosized TiO₂, most major producers are located in Europe (F. Klaessig, pers. Comm.) with one large plant in Japan. This suggests the majority of global nanosized TiO₂ production to take place in Europe.

Nanowerk (2012) reports a global production rate of 50,000 ton in 2010, which is likely to increase rapidly to more than 200,000 ton by 2015. On the other hand, a lower estimate is reported in Weir et al. (2012), estimating a global production of 2,000 ton nanoscale TiO_2 in 2005, increasing to 5,000 ton in 2010. Weir based these numbers on EPA (2009).

In Ricardo (2016) the total amount produced in Europe and imported in Europe in 2015 is estimated at 92,000 ton, substantially more than other literature source report for Europe and even more than the reported worldwide production.

Nano Zinc oxide

Sun et al. (2016) report a total of 7,260 ton nano-ZnO production in Europe, while both EC (2012) and Holden et al. (2014) suggest 8,000 ton globally.

Ricardo (2016) estimate 200 ton for the global nano-ZnO production, which seems very low considering other available information.

Future Markets Inc. (2014) reports the global market for bulk zinc oxide to be around 1.5 million ton, with nano-ZnO accounting for around 31,000 ton. Total production in Europe is mentioned to be 542 ton per year, substantially lower than the Sun et al. (2016) paper suggests.

For bulk zinc oxide, Future Markets Inc. (2014) reports the total consumption in Europe is around 1/3 of the global consumption. Extrapolating this to nanosized ZnO would imply a use of around 10,000 ton per year.

Future Markets Inc. (2014) also lists the companies producing nano-sized ZnO in the world. For primary producers, the production capacity for nano-ZnO is given. Five out of 17 from the globally leading suppliers are European, include 4 German producers (Altana/BYK Chemie, BASF AG, Grillo Zinkoxid GmbH, Symrise GmbH) and 1 from Belgium (Umicore). Additionally, 4 out of 17 secondary suppliers are in Europe (2 in France, 1 in Germany and 1 in Spain). When average production capacity for a

secondary producer is estimated at 1700 ton (which is the average for primary producers) the total nano-ZnO production capacity of the European companies is around 20,000 ton (around 10,000 ton for the primary producers only). This does however not necessarily mean that production takes place in Europe.

The fact that 5 out of 17 major producers are in Europe, and additionally some secondary suppliers as well, does not support the earlier statement that only around 2% of the production would take place in Europe (542 ton production in Europe, while 31,000 ton globally), but would suggest a production in Europe of around one third.

Nano Silver

For nano-Ag, the production volumes are rather low compared to other nanomaterials, which is shown by both Holden et al. (2014) and Sun et al. (2016)

The EC (2012) estimate of 22 ton/year was found on the low side in Holden et al. (2014) which estimates global production to be above 70 ton per year, recognizing that a large share of the production in Asia (i.e. China) may be unaccounted for. This implies that European production would not exceed 20 ton/year. On the other hand Sun et al. (2016) estimates production in Europe around 50 ton per year, whereas 100 ton is estimated by Ricardo (2016). Piccinno et al. (2012) estimates the production at 5.5 ton/year in Europe, but the production estimates from this study seem to be on the low side for the ENMs considered here, compared to the other estimates.

Nano Copper

Copper-based ENMs can be found in different forms (e.g. CuO, Cu_2O , $CuCO_3$, Cu^0) and each of these forms present different potential fields of application. In WP4 it has been proposed to differentiate the production volumes by copper form, since this will allow a more detailed and accurate description when determining the final applications of the nano-enabled products containing copper. Currently, even though different nano-copper forms can be found in real applications, only copper oxides (considering both CuO and Cu₂O) and Cu⁰ are being used in remarkable volumes (in the range of tonnes). Different literature sources as well as market reports have been consulted to determine the total production volumes of copper-based ENM in Europe:

- nano-CuO production volume in Europe in 2014 was 45 tonnes, according to an industry report published by Allied Market Research (further described in section 2.2.2) (Allied Market Research, 2016);
- 2) Keller et al. (2013) reported a global production of nano Cu and nano CuO in 2010 of 200 tonnes. This value was also taken from a previous industry report (Future Markets, 2012). If these 200 tonnes are first scaled to 2014 and then scaled down to Europe using the GDP PPP, a value of 44 tonnes is obtained.

From this information, it may be concluded that most of the copper-based ENM production volumes are in nano CuO form. In the present report, it has been assumed that the volume production in Europe of Cu^0 is of 1 tonne, resulting in a total amount of 46 tonnes of copper-based nanomaterials. As a result, production volumes of nanoscale copper in Europe (10^2 tonnes) is much smaller than for other ENM as TiO₂ (10^5 tonnes).

Carbon black

For carbon black the situation is different from the other ENMs. Due to the large quantities produced and its long history of use, the production amounts are relatively well known. Global production is

estimated at 9.6 million ton (EC 2012) and >10 million ton (Holden et al., 2014). A similar production estimate of 10 million ton carbon black is reported in Ceresana (2013).

There have been estimates for the Asian production to account for 60% of the global share (with 40% from China alone). Then, the carbon black production in the US is likely higher than that in Europe, which leads to the conclusion that European production would be around 10-15% of the global share (B. Park, pers. comm., 2017), thus equalling around 1.5 million ton.

IARC (2010) lists carbon black production capacities in 15 EU Member States for 2005, totalling about 1.4 million ton. In the years after 2000, capacity and production in Europe were declining slightly while production in Asia has been increasing. Extrapolating this trend onwards to 2012-2014 would be roughly in line with the 15% global share reported above.

2.2.2. Information collected from industry reports

Information regarding the total production volumes in Europe of all the ENM except Carbon Black (CB) is also available from a commercially available market report. In this specific case, the report "Europe Nanomaterials Market: Trends, Share, Opportunities and Forecasts 2014 – 2022", from Allied Market Research (2016) has been used. An example of the kind of information provided is shown in Figure 3. It must be emphasized that information included in the report is not country specific, it just provides values for the whole Europe. Country distribution of the ENMs production volumes is described in the Section 2.6 of this report.

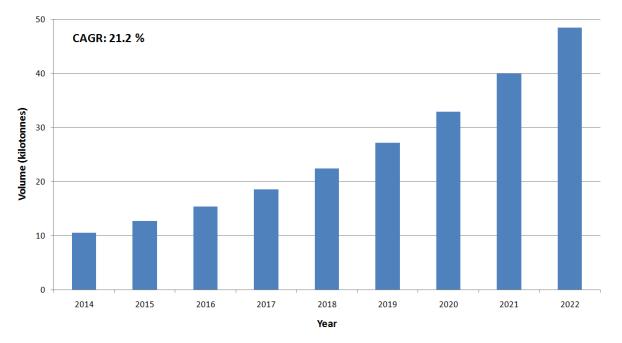


Figure 3: European nanosized TiO₂ market for 2014-2022, taken from Allied Market Research (2016).

According to Allied Market Research (2016), the information contained in the reports is obtained through interviews with industry participants, a thorough research in literature, industry annual reports, government websites and other such documents which may provide relevant information on the topic. Moreover, a set of analysis tools and data models are used where there is significant lack of information and estimates, to translate qualitative and quantitative industry indicators into exact industry estimates. These models also allow analysts to examine the prospects and opportunities

prevailing in the market to accurately forecast its course. Thus, a prediction of production volumes from 2014 to 2022 is provided in terms of Compound Annual Growth Rate (CAGR), a business and investing specific term that indicates the mean annual growth rate of an investment over a specified period longer than one year. Although in this model it is not currently used as input, it might be applied to obtain temporal release predictions over a wide period.

The advantage of using market reports information is that data reliability is assured by a recognized organism, in this case Allied Market Research. However, as disadvantages, the price of the reports is usually high, so their acquisition is limited. Moreover, even if the procedure followed to obtain the data is accurate and representative, the values are subjective and dependent on the approach taken by the market research organization to which the report is bought. Market reports usually contain little methodological background. As supporting information to substantiate results is lacking, in addition to the reports being confidential and not published in scientific literature, none of the information is peer reviewed in any way.

In any case, alternative forms of data collection would lead to higher inaccuracy and above all a much higher data compilation time. Due to the short project duration, it is convenient to invest time in other novel features included in the database structure as the country distribution of ENMs.

2.2.3. Selection of adopted production values for this study

Based on the available inputs described in the preceding sections, the numbers highlighted in Table 2 will be used as input for the ENM release modelling described in this deliverable report. In the absence of any information on trade and specific data of ENM manufacturing and/or consumption, we assume that all ENMs that are produced in Europe are also used in the manufacturing in Europe and consumed in Europe. A rationale for the numbers selected is provided below.

Table 2 Total production, manufacturing and consumption amounts for Europe adopted in this study

	Estimated production amount for Europe* (ton)
TiO ₂	30,000
ZnO	8,000
Ag	20
Copper (CuO and	46 (45 ton CuO <i>,</i>
Cu⁰)	1 ton Cu ⁰)
Carbon black	1,500,000

* In this work, Europe comprises of the EU28 Member States plus Norway and Switzerland

• For TiO₂, estimated production amounts vary widely across literature sources. However, the key sources identified in this study, both having reviewed existing estimates (Sun et al. 2016 and Holden et al. 2014) come up with values in the same order of magnitude, despite being

for Europe and global. This would be in line with the assumption that Europe is a major player in global TiO_2 production (F. Klaessig, personal communication, 2016). Based on this, the value of 30,000 ton reported in Holden et al. (2014) is selected as the primary estimate for this study.

- For ZnO, the reported values in Sun et al. (2016), EC (2012) and Holden et al. (2014) are in the same order of magnitude. Again, this would suggest most production takes place in Europe. Future Markets Inc. (2014) suggests a nano-ZnO production of 31,000 ton globally, with 5 out of 17 major producers being located in Europe. Assuming the same production for each major facility, this would be in line with the estimated production of just below 10,000 ton in Europe. We therefore adopted the 8,000 ton reported in Holden et al. (2014) for this study.
- For Ag, the situation is different as production rates are much lower compared to TiO₂ or ZnO. Given the different values reported we feel the 50 ton/year may be overestimating given the apparent large production in China and other parts of Asia. Therefore, we adopt a value of 20 ton for nano-Ag production in Europe which would be within the 22 ton/year globally as given by the EC (2012).
- For copper, the value from Allied Market Research (2016) has been adopted, estimating total nano-CuO production in Europe at 45 ton, and nano-Cu⁰ production at 1 ton, totalling 46 ton nanosized copper. This is in line with the estimates by Keller et al. (2013) and EC (2012) when these are scaled down to Europe and a trend correction towards 2014 is applied.
- For carbon black, the production in Europe is estimated at 15% of the global production reflecting the various sources available. With a total production around 10 Mton this yields 1.5 Mton carbon black production in nanoform for Europe.

2.3. Information about the expected release forms from production, manufacturing and use of ENMs

As mentioned in the introduction, current (nano)material flow models track (nano)materials life cycle paths from one compartment to the other and identify at each stage how much materials (mass) are released into environmental (e.g. freshwater) and technological compartments (e.g. waste water treatment plant). For that purpose, transfer factors are used. The final aim of these models is to estimate predicted environmental concentrations (PEC) in the environment, therefore to assess environmental exposure. Depending on the scope of the published studies, the number of compartments evaluated, the number of life cycle stages considered of a product, the target environmental / technological compartments as well the extent to which some fate processes are evaluated greatly differ. It has been already discussed in literature that MFA are meant to provide a first step in environmental exposure estimation of NMs, but such estimates are in general not based on fundamental multimedia fate and transport analysis (Gottschalk et al., 2010).

One parameter that is not considered in current models, from a qualitative/informative nor from a quantitative perspective, is the released form of ENMs during the different stages of a product. It is well known from literature that different situations can lead to different release forms and amounts, depending on the composition and the intended use of a nano-enabled product (Figure 4). Generally speaking, the consideration of particles transformation on their life cycle way due to dissolution, aggregation, forming of new chemical complexes and other material degradation processes have only to a very limited degree been considered (e.g. in WIP, STP, waters). Such consideration mostly resulted in ENM flows into material elimination or, in other words, into material forms not considered anymore as pristine nanomaterial. It is however for most life cycle steps generally assumed that particles do not transform during synthesis / manufacturing / use / end-of-life and keep the same size/form than

pristine ENMs. This is a key point since the relevant ENM exposure forms entering the different compartments will determine further fate and transport of the (nano)materials in the environment. The aim of WP4 is to categorize release forms of ENM, based on the following criteria:

- 1. Matrix-embedded
- 2. Pristine (most probable during production)
- 3. Aggregated
- 4. Dissolved
- 5. Transformed (e.g. by sulfidation or oxidation)

Figure 4 illustrates possible release forms (covering from point 1 to 4 above) during the use of nanoenabled products formed during the use phase because of external physical or chemical processes. Dissociated ions released from ENMs might further react to form other species (e.g. AgCl) which will cover point five above.

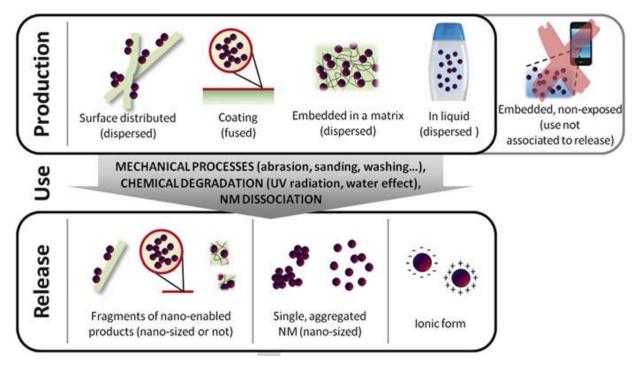


Figure 4: Possible forms of NMs released during the use of these products that can end up into the different environmental compartments. Adapted from Vílchez et al. (2015).

Along the project, release experiments at lab scale, literature revision and better knowledge of the case studies will help in defining release forms for a large variety of nano-enabled products. These release forms will be introduced in the ENM release model presented in this report and if feasible will be introduced in the mass flow modelling that is being performed in WP4. Moreover, this will be a valuable input for the different WPs in NANOFASE (WP4-WP8) evaluating fate of NMs in the different environmental / technological compartments (Figure 5).

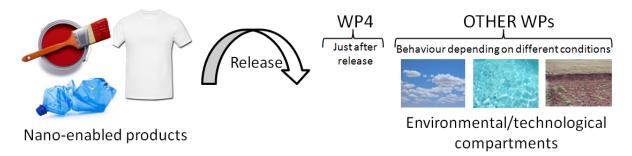


Figure 5: Role of WP4 in the assessment of the ENMs forms of exposure

As an example, the evaluation of two case studies included in NANOFASE and the corresponding relevant exposure forms are indicated below.

Case 1: Antifouling paints for marine activities (with Cu₂O NPs as antibacterial agent) provided by HEMPEL

- Synthesis: Cu₂O nanoparticles, dispersed in water, and coated with polyethylene glycol are synthesized by Promethean particles (PP). According to PP, uncontrolled emissions to the environment are negligible in the wet synthesis procedure they use. However, synthesis waste containing ENMs is produced, which is disposed as hazardous waste. This waste will be eliminated through a controlled treatment afterwards, thus not ending up in the waste water treatment plant. The ENMs concentration in the waste depends on the process, but taking PP synthesis method as a reference, it is considered to be ≤0.1wt%. Particles are considered to be pristine ENMs dispersed in water.
- Coating process (painting): the hull of the vessel can be painted using different methods in the shipyard: spray, paintbrush and roller, where each of them presents a different release probability. Paintbrush and roller are the most directional methods, meaning that a higher amount of paint ends up on the surface, while sprayed paint could be more easily released to air and propagated. In any case, the product would maintain its original composition so, the Cu₂O NPs released would remain embedded in the liquid matrix.
- Use phase: experimental results obtained in Task 4.2 suggest that Cu²⁺ is released to water when panels coated with antifouling paints have been immersed in water at controlled temperature (25 °C). Therefore, it can be assumed that most probably the Cu₂O NPs are <u>dissolved</u> in the sea water compartment.
- End of life: old paint layers are commonly removed by sanding the surface before painting again. During this process, small particles containing ENM could be released to air due to mechanical stress. As in the coating process, the most likely release form of the Cu₂O NPs is <u>embedded in the matrix</u>, but in this case in solid form.

Case 2: Photocatalytic coating for roads (with TiO2 NPs as photoactive agent) provided by FCCO

- Synthesis: TiO₂ NPs have been obtained from Cristal Global, presenting a 70:30 mixture by weight of
 anatase and rutile structures. Both chloride and sulphate processes to produce various grades of
 materials, including nano variants, are used by Cristal Global. Given the quoted HCl content, this
 product may be most likely produced by the chloride process. However, there is no information
 about ENM release/waste during synthesis. In any case, is highly probable that ENMs are being
 generated in pristine form or aggregated.
- Coating process (product application on the road): The photocatalytic coating is applied by means of specific machinery with a coating process similar to spraying. TiO₂ ENMs are mixed with resin to form an aqueous dispersion. Consequently, the product can be easily released to the air and spread. Since the spraying process is the one producing the release, the TiO₂ NPs are released <u>embedded in the liquid matrix (i.e. TiO2</u> with adsorbed resin on the surface).
- Use phase: nanoparticles loosely attached to the road, extracted by the wheels and/or washed away by rain could end up in the sewerage system and then to the WWTP, from where they could arrive to the soil (as sludge) or to the water. TiO₂ NPs loosely attached to the road or washed away by rain might be released as <u>aggregated</u>, or <u>particles embedded in the matrix</u>, since it has been demonstrated that subproducts generated by the photoxidation of the bituminous surface are also released to the water compartment. Regarding the particles generated by wheel abrasion, they are probably released to air as <u>matrix embedded</u>.
- End of life: generally speaking, old roads do not experience any end-of-life process, maintenance of roads is usually made by paving new asphalt over the old road surface. Thus, any ENM release is produced.

2.4. Trends in ENM volumes across Europe

The current estimate of ENM releases is not given for a specific year, however when data allows we used the latest year if possible, 2014 preferable. Given that this assumption might be justified for products for which the production and use is not changing very much, the reality is that production and use of several engineered nanomaterials is changing rapidly (e.g. Ricardo 2016).

A rapid increase in production may occur for new and innovative ENMs that have been produced on pilot scale only but for which product evaluation testing has shown very promising results and orders for larger quantities are placed. Also, novel applications may be found for certain existing ENMs, after which production of the materials may show a sharp increase again (e.g. quantum dots application in TV displays). Industrial scale application of a certain ENM may until a certain moment have been restricted by law that prohibits the use of the ENM for a specific type of class of product. When further testing shows the product to be safe such legal restrictions may be abrogated after which production and application may boom. Generally, many ENMs are still relatively new and many of their qualities are still to be discovered. In addition, new ENMs such as hybrid particles are being developed each year.

The ENMs selected in NanoFASE are characterised by a significant current industrial production and application, as well as being considered promising in the sense that new applications are likely to be found in the future. The materials are mostly past their development stage and their merits are generally recognised, although they may still await legal approval for certain applications. Most of the selected materials have witnessed a sharp increase in production in recent years and there is enough reason to expect the production of the selected ENMs to continue to increase in the foreseeable future.

Searching in literature for quantitative information very different estimates for the future development of production can be found. For instance, Nanowerk 2012 estimated that compared to 2010 the production of nano-TiO₂ would have increased four-fold in 2015, which was however never realised. More examples of past overestimations of future production trends are available. We consider such estimates to be somewhat speculative and highly uncertain. Possibly more conservative consistent trend information is available from specialised commercial market research companies but this type of information is handled confidentially and only available for a fee.

In Allied Market Research (2016) a forecast for the European production of four of the ENMs selected in NanoFASE is given. The projections are stated to be based on "primary research, government publications, company releases and AMR analysis". Figure 6 shows the estimated ENM production for the period 2014 to 2022, per ENM. In general, Compound Annual Growth Rates (CAGRs) between 20 and 30% are estimated, depending on the ENM. For the ENM market as a whole, Allied Market Research (2016) estimates an almost five-fold increase between 2014 and 2022 for Europe.

Another ENM that is selected in NanoFASE is carbon black (CB, not shown in Figure 6). CB is unlike the other four ENMs in the sense that it is produced in bulk chemical quantities and has been around for many decades. Almost all CB produced can be considered nano-CB. Production in Europe has been relatively stable in the past decade. Since CB is mainly used in the manufacture of rubber products such as tyres and the average CB content in rubber has not changed dramatically during the past decade, regional production roughly follows regional demand for rubber products. A small part of the CB is considered "speciality blacks" and the production of this type of CB may show a significant future

Figure 6: Projected production of nano-TiO₂, nano-ZnO (left y-axis), nano-Cu and nano-Ag (right y-axis) according to Allied Market Research (2016)

2.5. Methodology for downscaling to ENM product level

As a next step, the estimated European totals for manufacturing and consumption as summarized in Table 2 are further detailed by the product they are used in. For example, since TiO_2 is widely used in sunscreens, in our estimate 45% of the total nano- TiO_2 is allocated in this specific product. Therefore, it is assumed that 45% of the manufactured amount of TiO_2 goes into sunscreens, and also that 45% of the consumption of TiO_2 takes place as part of sunscreen.

To provide the factors for breaking down the overall manufacturing and consumption for each ENM into different products, several literature sources have been used. The most prominent source used is the Danish study (Gottschalk et al., 2015b) where detailed split factors are available for nanosized TiO_2 , ZnO, silver and carbon black, which have been adopted for this study by basing our shares for each ENM on their modal values. For copper/copper oxides and for carbon black, the product distribution is described below.

Since carbon black is an established bulk chemical that has been used for decades, information
of usage distribution is readily available from literature. In addition, nearly all CB is nano-CB,
which further simplifies the allocation of the ENM CB to the various product categories. IARC
(2010) quotes the distribution of CB over the range of products in which it is used, reflecting
the situation in Europe in 2005 (Table 3).

Product category	Share (%)
Rubber tyres	70.0
Rubber products	20.0
Paints and varnishes	3.0
Antifouling paints	0.1
Inks	3.0
Plastic components (various articles)	3.0
Filters	0.2
Others	0.7

Table 3: Product allocation for carbon black, for Europe

The produced volumes of both CuO and Cu⁰ have been distributed into different products. Nanoscale CuO distribution has been obtained from Caballero-Guzman and Nowack (2017). On the other hand, for Cu⁰ a new distribution has been performed by looking at different sources of information, since such distribution has not previously been reported in literature. In order to determine the distribution share (%) for each nano product containing Cu⁰, different online databases containing inventories of nano-enabled products, classified by type of ENM, product category, or even by potential impact were first consulted (The Nanodatabase, 2017; Project on Emerging Nanotechnologies, 2017; Nanotechnology Products Database, 2017; Nanowerk Product Catalog, 2017). Once the products containing nanocopper were identified, they were analysed based on literature and personal judgment in order to determine which of them could contain Cu⁰. It should be pointed out that in most cases assumptions had to be made because the nano-copper forms were not indicated. As a result, a product distribution for Cu⁰ was obtained, which is shown in Table 4, together with the nano-CuO distribution.

ENM	ENM Product category	
	Catalysts	35%
	Electronics & Optics	31%
Copper	Coatings, paints and pigments	24%
oxide	Energy and Environment	4%
	Medical	3%
	Cosmetics	3%
	Cosmetics	29%
	Food and beverages	29%
	Engine additive	14%
Metallic	Filters	10%
copper Construction Paints		5%
	Electronic Paints	5%
	Welding nozzle	5%
	Electronics	5%

Table 4: Product allocation of nano-CuO and nano-Cu⁰

Apart from this analysis, additional information was obtained from experts (F. Klaessig, B. Park) which brought up additional applications of nano-copper not considered in Table 4. For instance, major sources of nanosized copper applications would be pesticides and military smoke screens, which are not included in the product allocation presented in Table 4. This information has not been used in the current version of this study to ensure consistency with the product distribution used by all partners in this work package.

However, the distribution presented here should be regarded as a first breakdown which is subject to further discussion and refinement during the next stage of the NanoFASE project.

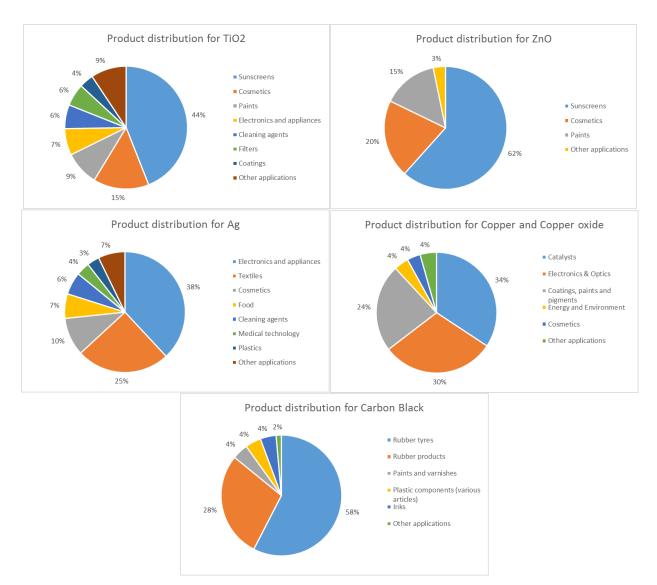


Figure 7 shows the most important products for each of the 5 ENMs considered.

Figure 7: Distribution of ENM manufacturing/consumption over the main products/applications

2.6. Methodology for downscaling to country level

After the manufacturing and consumption of ENMs have been downscaled to the level of individual product fields such as tires, textiles, cosmetics, food etc., the next step is to allocate to country level.

For ENM production, the distribution to country level is made by combining information on production locations. Engineered nanomaterials are specific substances which are only made in specific locations,

typically not in each country. The information on where this production takes place however, is not easily available. Therefore, we rely on information provided in-kind, information available online and expert judgements.

- For TiO₂, the current distribution of production capacity over the different countries has been based on market information (F. Klaessig, personal communication, 2016) stating the name of the company that produces all nano- TiO₂for use in cosmetics in Europe and subsequent allocation to countries based on the locations of production sites in Europe of that company. Furthermore, one specific country was named in which all nano- TiO₂for non-cosmetics use is thought to be produced.
- For ZnO, information on the main producers was extracted from Future Markets Inc. (2014), where the major producers (both primary and secondary) of nano-ZnO in the world were listed, including their capacities. Given that exact production per facility is not known, the European ZnO production was allocated to these producers proportionally to their production capacity. This capacity was known for most production facilities but had to be estimated in certain cases. By adding up the producers per country, the country distribution was obtained.
- For nano-silver, no information was available and also the production amounts are low compared to the other ENMs. Based on expert knowledge (F. Klaessig and B. Park, personal communication) it is assumed that 50% is produced in Germany, 25% in Belgium and 25% in Poland.
- For copper, there is very little available literature on the allocation of production volumes to individual European countries. In the absence of this information, data from the European mineral statistics from the British Geological Survey (2016) has been used as proxy (reference year was 2014) which is based on production of smelter and refined copper in Europe (not only nanosized but bulk production). In Appendix 1 the corresponding country distributions for smelter and refined copper are shown. The same country distribution percentages are applied to the total production volume of nano-Copper oxide (45 tonnes) and nano-Cu⁰ (1 tonne), resulting in the distributions observed in Appendix 1.
- For carbon black, the distribution of production capacity is based on an updated list of production locations in Europe and their capacities, taken from IARC (2010).

For ENM product manufacturing, we have collected production data for different products from the Eurostat PRODCOM database (Eurostat, 2017), which contains production data per country in Europe at a detailed level of products. PRODCOM contains mass-based and value-based production data. Since the value-based (monetary data) are the most complete, these data were used to construct the proxy data from. The products considered in PRODCOM were aggregated to the application shares/categories as we used in this study, thus the proxies used for manufacturing based on PRODCOM are calculated by adding up the monetary value for each of the PRODCOM products.

For consumption of ENM containing products (during the use phase), individual proxies were collected based on the product which was used. Default proxies used are population or GDP (collected from Eurostat for the year 2014), however for specific products information on the use of those products has been collected. Here we have started from the most important contributors, e.g. for sunscreens (a key product in which nanosized TiO₂and ZnO are a component) a specific proxy has been developed for the use of sunscreens by country.

Table 5 provides an overview of the proxy parameters used for manufacturing and consumption, per ENM and for each of the products in which the ENM is contained.

Table 5: Overview of proxy parameters used to distribute manufacturing and consumption to thelevel of individual countries in Europe

	Product where ENM is	Contribution	rtion Proxies	
ENM	embedded in	(%)	Manufacturing	Consumption
TiO ₂	Sunscreens	44.02%		Proxy sunscreen use ¹
	Cosmetics		PRODCOM Cosmetics	Proxy cosmetics use ¹
	Paints	9.03%		ESIG paint consumption ²
	Electronics and appliances	7.00%	· · ·	GDP
	Cleaning agents	6.29%	PRODCOM_Cleaning agents	Population
	Filters	5.88%	PRODCOM_Filters	GDP
	Coatings	3.75%	PRODCOM_Coatings	ESIG paint consumption ²
	Plastics	3.65%	PRODCOM_Plastics	Plastic consumption ³
	Glass and ceramics	1.72%	PRODCOM_Glass and ceramics	Population
	Sporting goods	1.52%	PRODCOM_Sporting goods	GDP
	Waste water treatment	0.71%	PRODCOM_Waste water treatment	Population
	Food	0.41%	PRODCOM_Food	Population
	Batteries	0.41%	PRODCOM_Batteries	GDP
	Textiles	0.30%	Textiles_Manufacturing	Population
	Spray	0.20%	GDP	Population
	Light bulbs	0.20%	GDP	Population
	Metals	0.10%	PRODCOM_Metals	GDP
	Cement	0.10%	Cement production	GDP
	Sunscreens	61.63%	PRODCOM_Sunscreens	Proxy sunscreen use ¹
	Cosmetics	20.54%	PRODCOM_Cosmetics	Proxy cosmetics use ¹
	Paints	14.60%	ESIG paint production	ESIG paint consumption ²
	Plastics	2.04%	PRODCOM_Plastics	Plastic consumption ³
	Glass	0.71%	PRODCOM_Glass	Population
ZnO	Electronics and appliances	0.20%	GDP	GDP
	Filters	0.10%	PRODCOM_Filters	GDP
	Cleaning agents	0.10%	PRODCOM_Cleaning agents	Population
	Paper	0.01%	GDP	Population
	Metals	0.01%	PRODCOM_Metals	Population
	Wood	0.01%	GDP	Population
	Food	0.01%	PRODCOM_Food	Population
	Textiles	0.01%	Textiles_Manufacturing	Population
	Electronics and appliances	38.06%	GDP	GDP
	Textiles	25.07%	Textiles_Manufacturing	Population
	Cosmetics	10.19%	PRODCOM_Cosmetics	Proxy cosmetics use ¹
Ag	Food	6.59%	PRODCOM_Food	Population
	Cleaning agents	5.99%	PRODCOM_Cleaning agents	Population
	Medical technology	3.60%	PRODCOM_Medical technology	GDP
	Plastics	3.30%	PRODCOM_Plastics	Plastic consumption ³

D4.1 - Inventory of estimates of ENMs and nano-enabled products value chain

	Paints	3.00%	ESIG paint production	ESIG paint consumption ²
	Metals	2.40%	PRODCOM_Metals	Population
	Soil remediation	0.60%	GDP	GDP
			PRODCOM_Glass and	
	Glass and ceramics	0.60%	ceramics	Population
	Filters	0.30%	PRODCOM_Filters	GDP
	Diapers	0.20%	GDP	Population
	Paper	0.10%	GDP	Population
	Catalysts	34.27%	GDP	GDP
			PRODCOM_Electronics and	
	Electronics & Optics	30.35%	appliances	GDP
	Coatings, paints and		PRODCOM_Paints and	
	pigments		Coatings	ESIG paint consumption ²
	Energy and Environment	3.92%		GDP
			Proxy sunscreen and	1
Cu /	Cosmetics	3.57%	cosmetics production	Proxy cosmetics use ¹
Cu / CuO	Medical	2 0 4 9/	PRODCOM_Medical technology	GDP
	Food and beverages		PRODCOM Food	Population
		0.30%		GDP
	Engine additive			
	Filters		PRODCOM_Filters	GDP
	Paints		PRODCOM_Paints	ESIG paint consumption ²
	Welding nozzle	0.10%		GDP
	Flastranias	0.01%	PRODCOM_Electronics and	CDD
	Electronics		appliances	GDP
СВ	Rubber tyres	70.00%	PRODCOM_Rubber tires PRODCOM_Rubber	Tyre_consumption ⁴
	Rubber products	20.00%	_	GDP
		20.0070	PRODCOM Paints and	001
	Paints and varnishes	3.00%	—	ESIG paint consumption ²
	Plastic components			
	(various articles)	3.00%	PRODCOM_Plastics	Plastic consumption ³
	Inks	3.00%	PRODCOM_Ink	GDP
	Others	0.70%	GDP	Population
	Filters	0.20%	PRODCOM_Filters	GDP
	Antifouling paints		PRODCOM_Paints	GDP

¹ Calculated based on Global Insight (2007), proxy is the per capita consumption by country (in US dollars) on cosmetics multiplied with the share of sunscreens / other cosmetics at country level.

² Based on production and consumption data for solvent containing products from the European Solvents Industry Group (ESIG, 2015)

³ Plastic consumption per country from Plastics Europe (2014)

⁴ Tyre consumption assumed proportional to vehicle kilometres driven per main vehicle category combined with particulates emission factor

2.7. Quantification of releases of ENMs from production, manufacturing and consumption

For the releases of ENMs into the environment, specific release factors have been assigned to each ENM and each application as listed in Table 5. These factors do not only include the releases to environmental compartments such as water, air and soil, but also include the end-of-life routes. All in all, the factors provide an annual mass-based breakdown for ENMs covering their life release.

During production of ENMs, most of the ENMs will go into the manufacturing stage, but a small quantity of the ENMs will end up in the environment. For manufacturing the same applies, most ENMs are taken up in the manufactured products and a small fraction is released to the environment. The manufactured products are then consumed. During this use stage, a higher share of the ENMs is released into the different environmental compartments. The part which is not released is then considered as an input to the different end-of-life routes, including incineration, landfilling, recycling and other waste management treatments.

For each of the ENMs considered and for each product, the releases have been quantified. This has been expressed in percentages, showing the fractions of the environmental releases into the different environmental compartments. Most of these percentages have been based on the Gottschalk et al. (2015b) study, this applies especially for the product use stage. This study did include release factors for production and manufacturing for 10 specific ENMs, including each of the 5 ENMs included in this study. Only for copper, the information available from Gottschalk et al. (2015b) was not given. Since, they focused on copper carbonate based wood treatment to estimate release for all applications, this study did not include all the applications considered in this report. Missing release factors have been estimated through expert judgement.

It should be noted that work is ongoing in the NanoFASE project to improve the release factors at the level of individual ENMs and products for which these ENMs are a component, as well as make these factors country specific with respect to the end-of-life pathways. This is work in progress described in Chapter 3, and the current version of the release model described in this chapter relies on the existing estimates presented in Gottschalk et al. (2015b). Although for copper and copper oxides further work is needed to harmonize the product distribution and release factors, a first calculation of releases of ENMs to the different environmental compartments is presented in this report. used for this study are provided in Appendix 2.

3. METHODS FOR WASTE PATHWAYS: RECYCLING, LANDFILLS AND INCINERATION

3.1. System definition and general methodology

The flows of TiO₂, Ag, ZnO, Cu and carbon black ENM from the production, manufacturing and use of nano-products to solid waste treatment were assessed at the national scale for each European country (EU28, Norway and Switzerland).

The total ENM production of Ag, TiO₂ and ZnO was divided into product categories (PC), according to the results from Sun et al. (2014) (Tables 3, 5 and 7), those of carbon black from Gottschalk et al. (2015) (Table 8). Two forms of Cu were considered (Table 10): copper oxide (CuO) and metallic copper. CuO PC were taken from Caballero-Guzman and Nowack (2017, in preparation), those of metallic Cu were previously defined in this work (see Chapter 2).

However, some of these PC are vague. For example, "Coatings" can be applied on construction materials or on vehicles, whose wastes are not treated in the same way. Consequently, the product applications (PA, such as "Construction" or "Automotive") of each PC were specified. In this way, the waste categories (WC) in which the ENM occur could be known, enabling a more accurate data collection and a better tracking of the ENM fate towards solid waste treatment (Figure 8).

Five compartments were considered regarding solid waste treatment: Landfill for construction and demolition waste (CDW), landfill for reactive waste (RW), incineration, recycling and export. The partitioning of the flows towards the CDW landfill and the reactive landfill was based on the nature of the waste: all CDW landfilled was considered going to CDW-specific landfills, while all other waste landfilled was considered to enter reactive landfills. Recycling was understood in the broader sense, meaning that the masses entering this compartment are the masses sent to sorting or recycling plants; they are the amounts collected separately from the mixed (residual) waste. The flows of ENMs exiting these sorting and recycling plants are out of the scope of this report and will be studied in future work.

As described earlier, the amounts of ENM produced, manufactured and consumed differ within one country, because imports and exports occur between each stage. To keep a mass balance through the system, two fictive compartments were added in the conceptual model, to manage the imports and exports of the ENM: M0 (between Production and Manufacturing) and M2 (between Manufacturing and Consumption). Additionally, releases of 0.5% were assumed from the production and manufacturing stages towards both waste water and air.

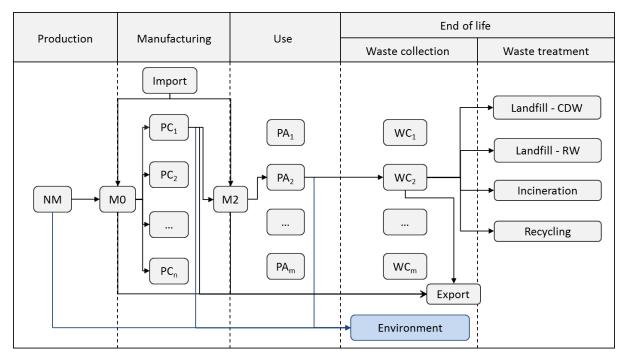


Figure 8: Definition of the system. PC: Product category; PA: Product application; WC: Waste category. CDW: Construction and demolition waste; RW: Reactive waste.

3.2. Data collection and quality assessment

3.2.1. Characterisation of the product applications

To identify the PA relevant for each PC (see Section 4.2), various sources were searched online: (1) consumer product inventories: the Woodrow Wilson nanotechnology consumer product inventory (http://www.nanotechproject.org/cpi/), the Danish Nano Database (nanodb.dk), the BUND database (http://archiv.bund.net/nc/themen_und_projekte/nanotechnologie/nanoproduktdatenbank); (2) commercial platforms: alibaba.com, amazon.com, ec21.com; and (3) Google. This method was applied to have a clearer idea of what each product category includes and to base our modelling on the best data we could find. However, we acknowledge that it cannot be considered exhaustive. Each source was given a weighting factor, or degree of belief (DoB), based on a decision tree (Appendix 3). A weighted distribution of PAs could be obtained for each PC by summing the number of products obtained from each source in each application, multiplying this sum by the DoB and dividing it by the total weighted number of applications (Equation 1, Figure 9):

$$f_{PA_{J}} = \frac{\sum_{k=1}^{p} (\#PA_{k,J} \times DOB_{k})}{\sum_{k=1}^{p} \sum_{j=1}^{m} (\#PA_{k,j} \times DOB_{k})}$$
(1)

Where f_{PA_J} is the fraction of PA_J (a given product application) in a given PC, $\#PA_{k,J}$ is the number of products for PA_J in the reference k and DoB_k is the degree of belief of reference k.

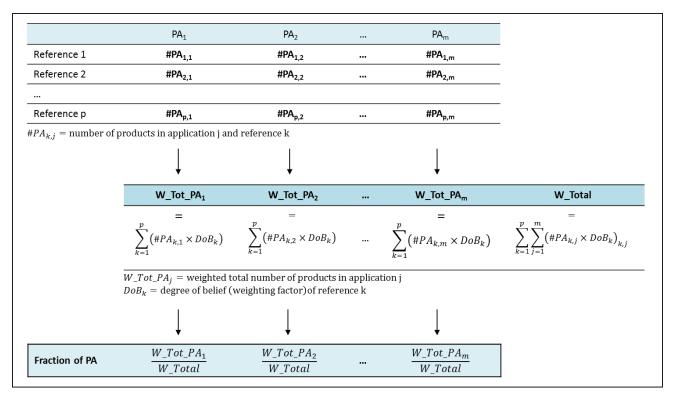


Figure 9: Calculation of PA distributions in each PC

3.2.2. Waste collection and waste treatment

The data regarding solid waste collection and treatment were obtained from reports and personal communications from government organisations and ministries or, when these were not available, from the Eurostat database (http://ec.europa.eu/eurostat/web/environment/waste/database). The references used are detailed in Appendix 4.

Both industrial and household wastes were included in the assessment. The exact fraction of industrial waste from manufacture was assessed for textiles and plastics. For the other solid products, this waste was assumed to be equal to 1%. No solid waste was considered for the liquid products such as paints and cleaning agents. All industrial waste was assumed to be sent to sorting or recycling plants. Illegal waste treatment was not considered in this work, so the construction and demolition waste and the end-of-life vehicles were considered to be all sent to sorting and recycling plants.

The quality of the data used for waste collection and treatment was assessed based on a pedigree matrix adapted from Weidema and Wesnæs (1996) (Table 6). Three data quality indicators were used: Geographical relevance (G), Temporal relevance (T), and Reliability (R). A score was given to each reference used for each indicator, on a scale ranging from 1 to 3 (1: best quality, 3: worst quality).

The geographical relevance indicator was used because for some of the countries and waste categories, data could not be found. In such a case, we had to use data from another country, with the most similar waste management system. This assessment was based on the waste streams of total municipal waste (Eurostat data, Appendix 5), neglecting the fractions composted. Local data were mostly used for the composition of the mixed municipal waste. The temporal relevance indicator was used to manage the different years of reference associated with the data. The reliability indicator

enabled an assessment of the expected accuracy of the reference. Eurostat was given a score of 2 because the definitions behind the data were not always fully clear.

Indicator score	1	2	3
Geographical relevance	Data for the country considered	Local data for the country considered	Data for a different country with similar waste management system
Temporal relevance	Year 2014 or later	Older than year 2014 and more recent than, or of year 2010	Older than year 2010
Reliability	Report from governmental organisation or waste management company; Personal communication from governmental organisation or waste management company; Peer-reviewed scientific literature	Eurostat database	Expert estimation

Table 6: Pedigree matrix used for the quality assessment of the references used for waste collectionand treatment

An overall data quality rating was then calculated for each datum, equivalent to its uncertainty level (EC et al., 2010; Turner et al., 2015; Equation 2).

$$DQR = \frac{G+T+R+W_i \times 4}{i+4}$$
 (Eq. 2)

 W_i is the weakest score obtained among i number of data quality indicators. Finally, a coefficient of variation (CV) was attributed to each DQR, which represents the uncertainty of the datum (Table 7, Hedbrant and Sörme (2001); Lanet et al. (2015)).

Data quality rating (DQR)	Coefficient of variation
0 < DQR ≤ 1	4.5%
1 < DQR ≤ 2	13.75%
2 < DQR ≤ 3	41.5%

3.3. Material flow assessment

The data collected and their associated uncertainties were implemented in one R code for one directional as well as constant probabilistic material flow analysis (PMFA). The method used for calculating the transfer coefficients (TCs) was adapted from Caballero-Guzman et al. (2015). First, in excel, the TC of a PC to a waste treatment type was calculated as the sum of the TCs determined for each PA to this waste treatment type, weighted by the share of the PA in the PC (Figure 10). Then, in R, these intermediate TCs were weighted with the share of the PCs before being summed, to result in the total TC of an ENM to the waste treatment processes.

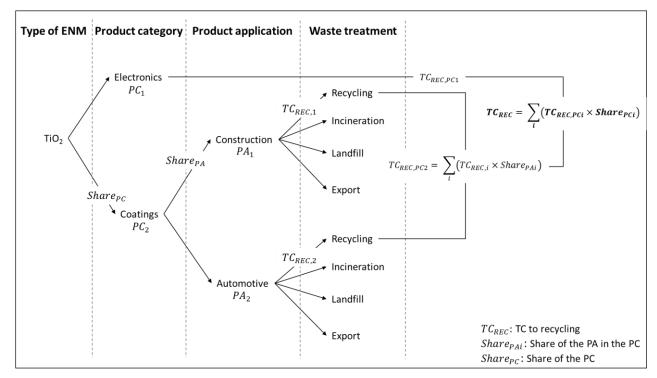
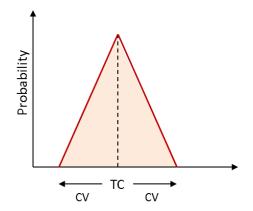
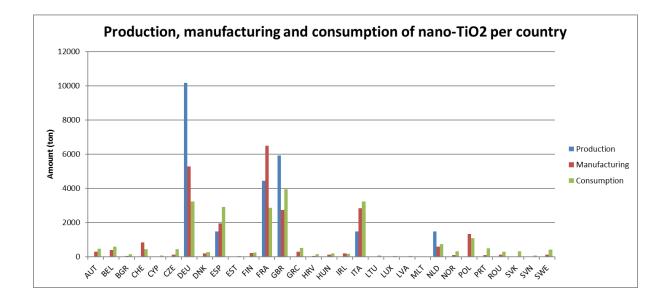
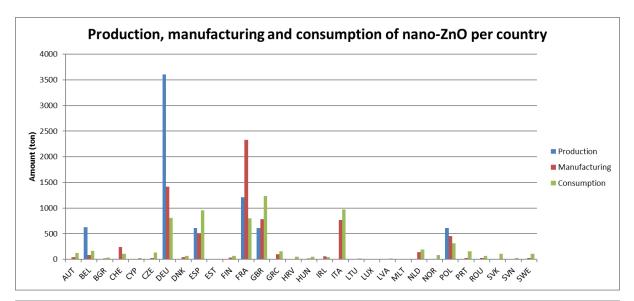



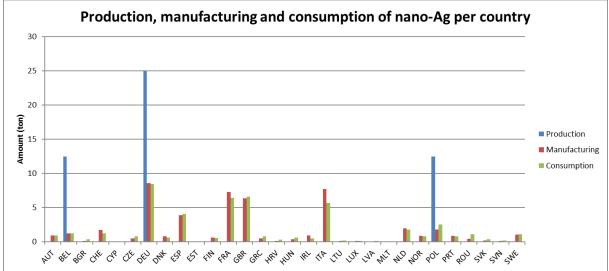
Figure 10: Calculation of the transfer coefficients

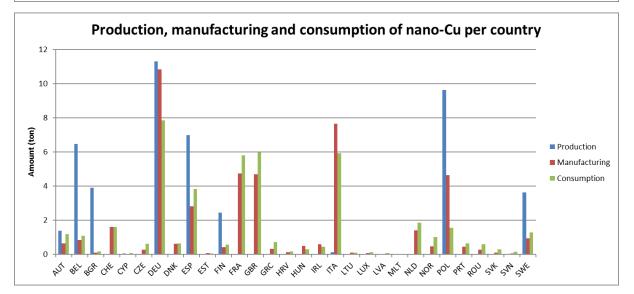
The uncertainty behind each TC were combined in the same way and used to generate probability distributions: the coefficient of variation associated to each TC determined the width of its triangular distribution (Figure 11).

4. RESULTS

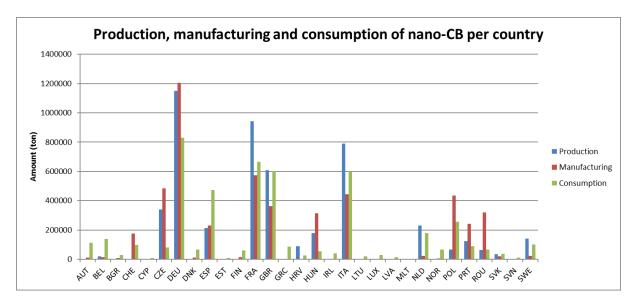
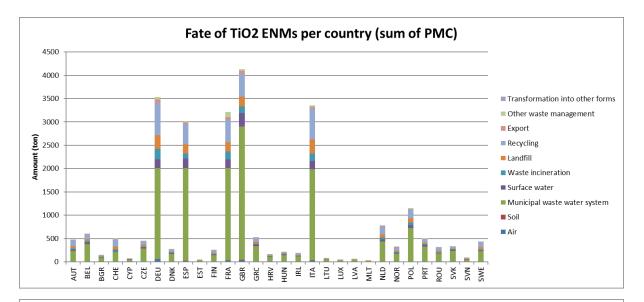

4.1. Production, manufacturing and consumption of engineered nanomaterials

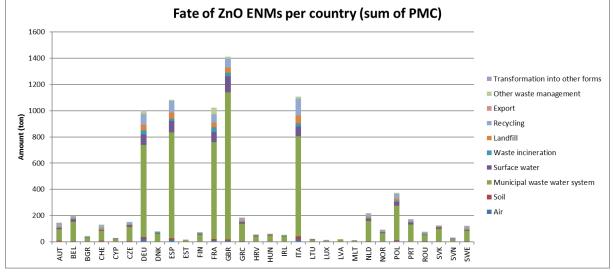

This section presents the main results for the production, manufacturing and consumption of the 5 selected engineered nanomaterials in this study at the level of individual countries.

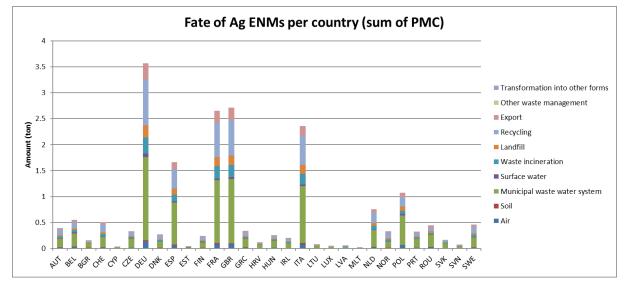

It should be noted that all results presented are preliminary results, as the production, manufacturing and consumption amounts, the distribution to products as well as to countries, and the release factors are subject to further refinement during the next phase of the NanoFASE project.

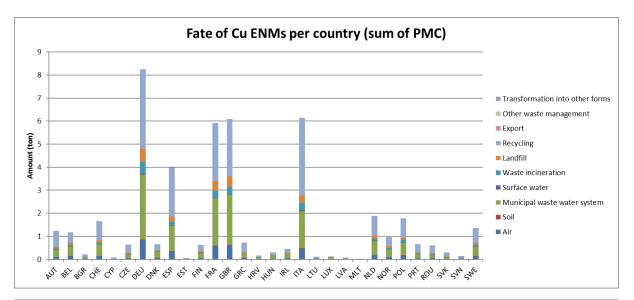

4.1.1. Production, manufacturing and consumption

This section presents the production, manufacturing and consumption amounts on a per country basis for the engineered nanomaterials. These are shown in Figure 12. The figures highlight that the distribution of production, manufacturing and consumption over the various countries in Europe is quite different. Especially production of ENMs typically takes place in only a few countries, while the manufacturing is more widespread across countries. For consumption, all countries contribute as the ENMs are widespread in everyday products used by European citizens.


Figure 12: Production, manufacturing and consumption of the 5 ENMs covered by this study for each individual European country


4.1.2. Environmental releases


Figure 13 presents the fate of ENMs per country for the sum of production, manufacturing and consumption of each of the 5 ENM, including both product use based releases to the environment and also the end-of-life routes are included. In this way, the fate of all the originally produced PMC is included. It is shown that for TiO₂and ZnO, a large share of ENMs is eventually released to water, which is related to the fact that a high share of these ENMs is used in cosmetics and sunscreens. For the other ENMs the situation is quite different due to the other applications, which have different release patterns. Especially for carbon black, the release pattern is very different as most of the CB ends up in recycling and waste incineration.

It should be noted that the release factors used are not yet harmonised with the release factors presented in Section 4.2.2, but mostly based on older versions of these factors presented in Gottschalk et al. (2015). A next step is harmonizing between these factors, and the uptake of the latest information in the ENM release model.

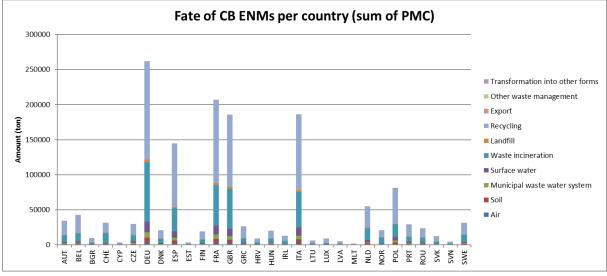


Figure 13: Releases of ENMs to different environmental compartments and to end-of-life routes, for individual European countries (combined releases for production, manufacturing and consumption)

4.2. Recycling, landfills and incineration of engineered nanomaterial products

4.2.1. Allocation to product applications and waste categories

4.2.1.1. Carbon black

Gottschalk et al. (2015) allocate most of the carbon black ENM in tires and other rubber products (Table 8). Although the category "Tires" is very well defined, no reliable information could be found to allocate "Other rubber products" to specific product applications. The multiple rubber applications appear to be small products such as belts, air springs or shoe soles. These products were considered to be collected in mixed municipal waste. In the same way, "Plastics" and "Fillers" could not be better defined, so they were attributed to total plastic waste and mixed waste, respectively.

Table 8: Allocation of carbon black ENM to applications and waste categories. EoL: End of Life; ELV: End-of-Life Vehicle; CDW: Construction and Demolition Waste; WEEE: Waste Electrical and Electronic Equipment

Product cat	egory		Ap	plication	
Name	PC Share	EoL release	Name	Share	Waste category
Tires	70%	0.850	Tires	1	ELV
Other rubber components	20%	0.999	Multiple	-	Residual waste
			Paper	0.66	Total paper
	3%	0.950	Automotive	0.21	ELV
Paints and varnishes			Construction	0.09	CDW
			Electronics	0.02	WEEE
			Furniture	0.02	Residual waste
Tala	20/ 1		Paper	0.85	Paper
Inks	3%	1.000	Toners	0.15	Toners
Plastics	3%	0.999	Multiple	-	Total plastic
Fillers	0.2%	0.700	Fillers	1	Residual waste
Antifouling paints	0.1%	0.330	Boat	1	Boat

As a result, most of the carbon black ENM are collected in end-of-life vehicles (ELV, 71%) and in mixed waste (20%), as shown in Table 9.

End-of-Life Vehicles	71%
Mixed waste	20%
Paper	4.5%
Plastic	3.0%
Toners	0.5%
Construction and demolition waste	0.3%
Boat	0.1%
Electrical and electronic waste	0.1%

Table 9: Transfer coefficients of carbon black to waste categories

4.2.1.2. Copper

Most of the nano CuO is used in catalysts (Table 10). These were assumed to be used in industrial processes; consequently all associated solid waste is considered to be collected. Electronics & Optics also constitute a high share of CuO use, but no accurate data could be found to refine this product category. Cosmetics and Medical applications are mostly released to waste water during use. A fraction of 5% was assumed to stay in the packaging and ends in this waste category. Food and beverages are more likely to be wasted before full consumption, resulting in partly full packages which

are not thrown away in separate bins. Therefore, a fraction of this PC was assumed to reach the mixed waste.

The definition of the product applications and their allocations to waste categories results in high shares of nano Cu collected as industrial waste (34%) and WEEE (33%) (Table 11). Construction and boats waste are other significant portions of the nano Cu waste collection (12%).

Table 10: Allocation of nano copper to applications and waste categories. WEEE: Waste electronic and electrical waste; CDW: Construction and demolitionwaste; ELV: End-of-life vehicles; LHA: Large household appliances

	Pro	duct categ	ory	-	Applicatio	n	
ENM	Name	Share - Share ENM nCu		EoL release	Name	Share	Waste category
	Catalysts	35%	34%	0.99	Industrial waste	1	Industrial waste
	Electronics & Optics	31%	30%	1	Electronics	1	WEEE
	Coatings, paints and	2.40/	220/	0.00	Wood coating	0.5	CDW
Copper	pigments	24%	23%	0.96	Boats	0.5	Boats
oxide	Energy and	40/	2.00/	1	Engines	0.5	ELV
	Environment	4%	3.9%		Electronics	0.5	WEEE
	Medical	3%	2.9%	0.05	Medical	1	Medical
	Cosmetics	3%	2.9%	0.05	Packaging	1	Packaging
	Cosmetics	29%	0.6%	0.05	Packaging	1	Packaging
	Food and howers as	29%	0.6%	0.1	Food	0.99	Mixed municipal
	Food and beverages			0.1	Packaging	0.01	Packaging
NA . 111	Engine additive	14%	0.3%	0.05	Automotive	1	ELV
Metallic	Filters	10%	0.2%	0.7	Filter	1	Mixed municipal
copper	Dainta	4.8%	0.1%	0.96	Walls	1	CDW
	Paints	4.8%	0.1%	1	Fridge	1	LHA
	Welding nozzle	4.8%	0.1%	1	Welding nozzle	1	Metal
	Electronics	4.8%	0.1%	1	Chip	1	WEEE

Industrial waste	34%
WEEE	33%
CDW	12%
Boats	12%
Packaging waste	5.9%
Medical waste	2.9%
ELV	3.0%
Mixed waste	0.8%
Metal	0.1%

Table 11: Transfer coefficients of nano copper to waste categories

4.2.1.3. Silver

According to Sun et al. (2014), the most significant use of nano Ag is in electronics (38.1%, Table 12). Sufficient data were found for this product category to separate the use in large household appliances (LHA) from the use in other electronics (e.g. consumer electronics or small household appliances). This enabled a better assessment of the waste flows: in contrary to other electronic waste categories, LHA cannot enter a household bin, so they were considered to be all collected separately from mixed waste. The packaging of paints, coatings and water treatment products were considered to not be recycled, as they can contain dangerous products: They were assumed to be treated in the same way as mixed municipal waste.

Table 12: Allocation of nano Ag to applications and waste categories. WEEE: Waste electronic and electrical waste; CDW: Construction and demolition waste; ELV: End-of-life vehicles; LHA: Large household appliances

Product c	ategory		Application		
Name	Share	EoL release	Name	Share	Waste category
Electronics &	38.1%	0.70	Electronics	0.84	WEEE
Appliances	56.1%	0.70	LHA	0.16	LHA
Textiles	25.1%	0.40	Textiles	1.00	Textiles
Cosmetics	10.2%	0.05	Cosmetics 1.00		Packaging
Food	6.6%	0.10	Food	1.00	Packaging
Cleaning agents	6.0%	0.05	Cosmetics	1.00	Packaging
			Medical waste	0.41	Medical waste
MedTech	3.6%	0.95	Contact lenses, wound dressings,	0.28	Mixed municipal
			Implants	0.31	Implants
		0.20	Construction	0.06	CDW
Dianting	3.3%		Electronics	0.02	WEEE
Plastics			Food containers,	0.14	Plastics
			Toothbrushes, brushes,	0.78	Mixed municipal
			Construction	0.64	CDW
			Electronics 0.11		WEEE
Paints	3.0%	0.65	Plastics 0.11		Plastics
			Watercolor palette 0.		Mixed municipal
			Packaging	0.05	Mixed municipal
Metals	2.4%	0.95	Pans, water softener	1.00	Mixed municipal
			Glass	0.33	Glass
	0.00	0.65	Construction glass	0.18	CDW
Glass & Ceramics	0.6%	0.65	Electronics	0.30	WEEE
			Residual waste	0.19	Mixed municipal
Soil remediation	0.6%	0.02	Soil remediation	1.00	Packaging
Filter	0.3%	0.70	0 Filter 1.00 Mixed m		Mixed municipal
Diapers	0.2%	0.95	Diapers	1.00	Mixed municipal
Paper	0.1%	1.00	Paper	1.00	Paper & Cardboard

The most significant waste categories in which nano silver is collected are electronics (39%), textiles (25%) and packaging (23%) (Table 13).

Electrical and electronic waste	39%
Textiles	25%
Packaging	23%
Mixed municipal	6.4%
Construction and demolition waste	2.3%
Medical waste	1.5%
Implants	1.1%
Plastics	0.8%
Glass	0.2%
Paper & Cardboard	0.1%

Table 13: Transfer coefficients of nano Ag to waste categories

4.2.1.4. Titanium dioxide

The most important share of TiO_2 ENM is cosmetics (Table 14), which explains why it is mostly collected in packaging waste (Table 15).

Construction waste and electronics are also significant waste categories. However, small electronic items such as sprays and mosquito killers were assumed to not be collected separately and to be treated as mixed waste. In the same way, sporting goods consisting in products such as golf clubs and tennis rackets were considered to be treated as mixed municipal waste.

Table 14: Allocation of nano TiO₂ to applications and waste categories. WEEE: Waste electronic and electrical waste; CDW: Construction and demolition waste; ELV: End-of-life vehicles; LHA: Large household appliances

Product category			Application			
Name	Share	EoL release	Name	Share	Waste category	
Cosmetics	55.6%	0.05	Packaging	1.00	Plastic packaging	
			Construction	0.87	CDW	
Paints	8.4%	0.99	Automotive	0.08	ELV	
			Packaging	0.05	Mixed municipal	
			Electronics	0.48	WEEE	
Electronics	6.5%	0.70	Large household appliances	0.35	LHA	
			Mosquito killers, sprays,	0.17	Mixed municipal	
Cleaning agents	5.8%	0.05	Packaging	1.00	Plastic packaging	
Filters	5.5%	0.70	Air conditioners	1.00	LHA	
Plastics	3.4%	0.97	Plastic	1.00	Plastic	
			Construction	0.46	CDW	
			Automotive	0.24	ELV	
			Airplanes	0.01	Airplanes	
			Textiles	0.07	Textiles	
			Packaging	0.05	Mixed municipal	
Coatings	3.5%	0.65	Electronics	0.05	WEEE	
			LHA	0.04	LHA	
			Medical instruments	0.004	Medical waste	
			Food	0.03	Mixed municipal	
			Water treatment	0.04	Mixed municipal	
	1.004		Construction	0.50	CDW	
Glass & Ceramics	1.6%	0.65	Air purifier	0.50	LHA	
			Golf clubs, rackets,	0.96	Mixed municipal	
Sport goods	1.4%	0.96	Textiles	0.04	Textiles	
WWTP	6.6%	0.02	Packaging	1.00	Packaging	
Batteries	0.4%	0.10	Batteries & Accumulators	1.00	Batteries & Accumulators	
	0.404	0.4.0	Food	0.99	Mixed municipal	
Food	0.4%	0.10	Packaging	0.01	Packaging	
Textiles	0.3%	0.97	Textiles	1.00	Textiles	
Light bulbs	0.2%	1.00	Lighting equipment	1.00	WEEE	
Spray	0.2%	0.05	Spray	1.00	Mixed municipal	
· ·			Construction	0.50	CDW	
Metals	0.1%	0.95	Automotive	0.50	ELV	
Cement	0.1%	0.99	Concrete	1.00	CDW	
Paper	0.1%	1.00	Paper	1.00	Paper & cardboard	

Packaging	68%
Electrical and electronic waste	12%
Construction and demolition waste	10%
Mixed municipal waste	3.9%
Plastic	3.4%
End-of-Life Vehicles	1.6%
Textiles	0.6%
Batteries & Accumulators	0.4%
Paper & Cardboard	0.05%
Airplanes	0.03%
Medical waste	0.01%

Table 15: Transfer coefficients of nano TiO₂ to waste categories

4.2.1.5. Zinc oxide

Most of ZnO ENM are used in cosmetics and paints (Table 16). As a result, almost all ZnO ENM are collected in packaging waste (83%) and construction waste (15%) (Table 17). The management of these waste categories will thus determine to a high extent the fate of these particles.

Table 16: Allocation of nano ZnO to applications and waste categories. WEEE: Waste electronic andelectrical waste; CDW: Construction and demolition waste

Product	category	/	Application		
Name	Share	EoL release	Name	Share	Waste category
Cosmetics	82.6%	0.05	Packaging	1	Packaging
Paints	14.3%	0.65	Construction	1	CDW
Plastics	2.0%	0.2	Residual and bulky waste	1	Mixed municipal
Class	0.70/	0.65	Light equipment	0.5	WEEE
Glass	0.7%	0.65	Construction	0.5	CDW
Electronics	0.2%	0.7	WEEE	1	WEEE
Cleaning agent	0.15%	0.05	Packaging	1	Packaging
Filter	0.1%	0.7	Filter	1	Mixed municipal
Paper	0.02%	1	Paper & Cardboard	1	Paper & Cardboard
Textiles	0.01%	0.4	Textiles	1	Textiles
Wood	0.01%	0.7	Construction	1	CDW
Food	0.005%	0.1	Packaging	1	Packaging
Metals	0.005%	0.95	Metals	1	Metals

Packaging	83%
Construction and demolition waste	15%
Mixed municipal	2.1%
Electrical and electronic waste	0.6%
Paper & Cardboard	0.02%
Textiles	0.01%
Metals	0.01%

Table 17: Transfer coefficients of nano ZnO to waste categories

4.2.2. Flows to waste treatment

The identification of the waste categories in which the ENM are present, the data collection which allowed the spatial distribution of production, manufacture and consumption among the European countries as well as the use of country-specific waste management data enabled the assessment of the ENMs mass flows to environmental and technical compartments (Appendix 6). As mentioned earlier, part of these flows, namely the flows of the ENM out of recycling to the environmental and waste treatment compartments as well as those from incineration and landfilling to the environment will be assessed in future work: the masses entering all compartments except recycling are due to change when this step of the work is completed. It is consequently more interesting to discuss in this report the shares of ENM entering landfilling, incineration and recycling, as they already give a good approximation of the expected sources of releases.

Construction waste was assumed to be all collected for sorting and recycling. Consequently, it enters the recycling compartment and the flows of ENMs from construction waste to landfills are null at this stage of the work. The export of waste was assumed negligible at this stage of the work: the collected wastes collected separately are exported after entering the sorting plants, and no data could be found on the export of mixed municipal waste. Consequently, three waste flows remain: to reactive landfills, to incineration and to sorting/recycling plants. The shares of the flows between these three compartments will be discussed in the next sections: 100% represents the sum of landfilling, incineration and recycling (Appendix 7).

Overall, recycling is the most significant waste treatment. This is partly explained by the European legislation, which requires high rates of recycling to all Member States. Specific regulations exist regarding most of the waste categories. This fact is enhanced by the way in which the recycling compartment has been defined in this work: it includes all waste separately collected, but this waste is not necessarily be actually reprocessed into new materials. Therefore, the share of recycled waste is expected to drop after assessing the flows out of this process towards landfilling and incineration.

Among the ENM, Cu, TiO_2 and ZnO present shares equal to or higher than 85% of recycling. This is due to the waste categories in which they occur: Industrial, packaging, construction and electronic waste present high rates of separate collection. On the other hand, Ag presents the lowest share of recycling, because of the high fraction of consumption in textiles: This waste category is very poorly collected in some countries, such as Greece or Spain.

Geographically distributed data = ...

4.2.2.1. Carbon black

Carbon black ENM show relatively homogeneous waste streams across the European countries (Figure 14 and Appendix 7A). The recycling rates vary over a range of 20%: The UK recycles 55% of its carbon black waste while Switzerland recycles 75%. Incineration and landfilling rates vary between 0% (Cyprus, France, Latvia, Lithuania, Malta, Slovenia, Romania, and Switzerland, respectively) and around 30% (Denmark and Greece, Lithuania, respectively). These homogeneous results are explained by the fact that 70% of carbon black is used in tires, which are all assumed to enter recycling plants, in all countries.

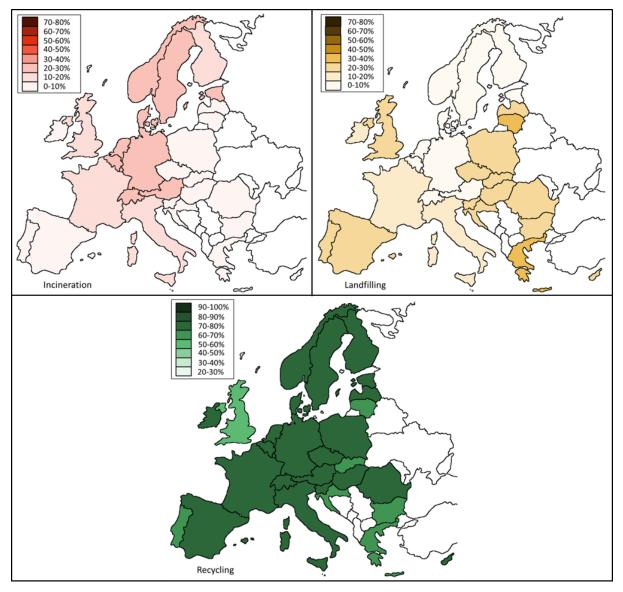


Figure 14: Carbon black ENM waste stream shares of landfilling, incineration and recycling in European countries

4.2.2.2. Copper

Very low shares of Cu ENM directly enter incineration plants (Figure 15 and Appendix 7B): Most countries incinerate most than 10% of this waste. Nine countries show recycling rates higher than 90%. The highest shares occur in Finland and Austria (96%). The lowest share is attributed to Romania (52%), which landfills almost all of the remaining waste (48%).

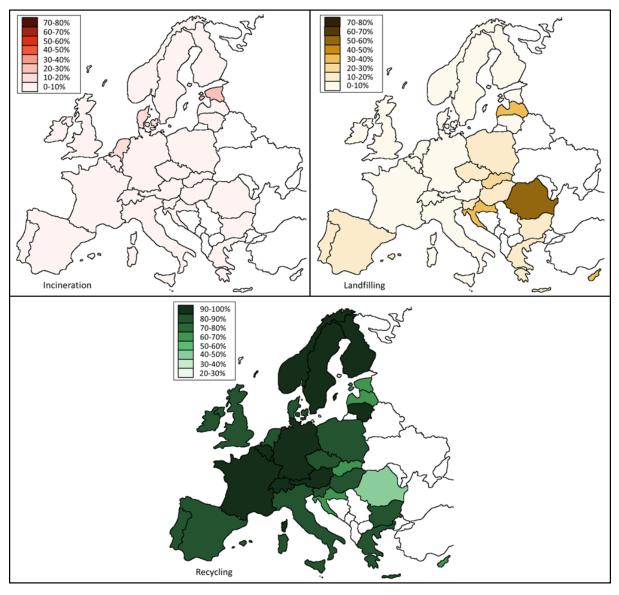


Figure 15: Cu ENM waste stream shares of landfilling, incineration and recycling in European countries

4.2.2.3. Silver

The highest shares of Ag waste recycling were found in Germany and Belgium (75%; Figure 16 and Appendix 7C). Both these countries incinerate the remaining waste more than they landfill it. Romania presents the lowest share of nano Ag recycling (22%). Most of this waste is landfilled in this country (74%). Latvia and Croatia also present very high shares of landfilling (59 and 60%, respectively). The highest shares of incineration occur in Estonia and the Netherlands (53% and 46%, respectively).

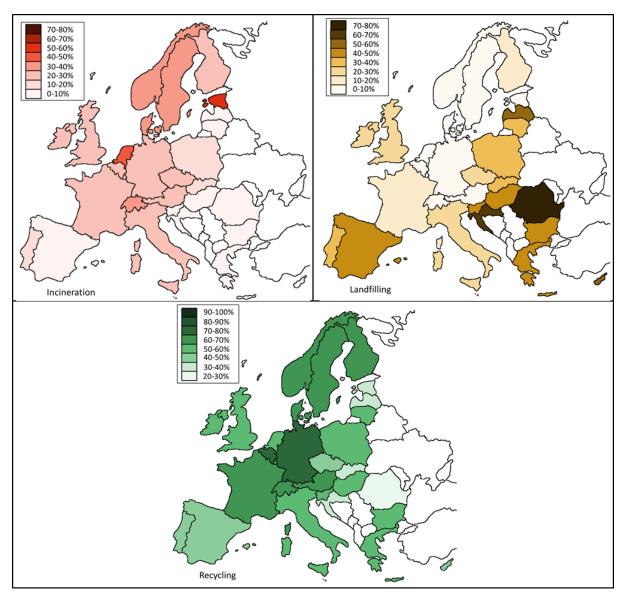


Figure 16: Ag ENM waste stream shares of landfilling, incineration and recycling in European countries

4.2.2.4. Titanium dioxide

The highest shares of recycling occur in Switzerland and Luxembourg (70 to 80%, Figure 17 and Appendix 7D). These countries present very low shares of landfilling (0 and 0.5%, respectively): the remaining waste in incinerated. On the opposite side of the scale, Romania, Croatia and Latvia show among the lowest shares of recycling (67%, 67% and 68%, respectively) and the highest shares of landfilling (33%, 32% and 32%, respectively). Almost no waste is incinerated in these countries. The other countries showing low shares of recycling are Estonia (68%), the Netherlands (68%) and Hungary (69%). The Netherlands and Estonia incinerate most of the remaining waste, while Hungary mostly sends it to landfills.

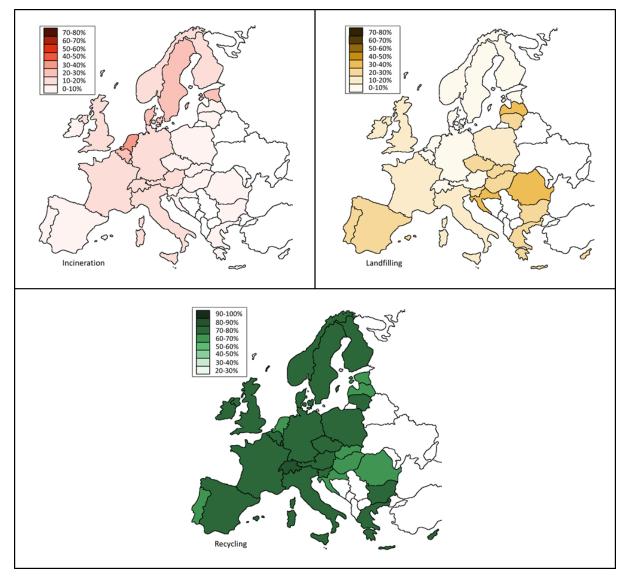


Figure 17: TiO₂ ENM waste stream shares of landfilling, incineration and recycling in European countries

4.2.2.5. Zinc oxide

The highest recycling shares of nano ZnO waste are attributed to Finland (96%), Sweden (94%), Switzerland (94%), Ireland (93%), Germany (92%), Belgium (91%) and Italy (90%) (Figure 18 and Appendix 7E). These countries present comparable shares of nano ZnO landfilling and incineration. Czech Republic, Hungary, Spain, Portugal and Romania present the lowest shares of recycling (75%, 75%, 75%, 75% and 77%, respectively); they all mostly landfill the remaining waste.

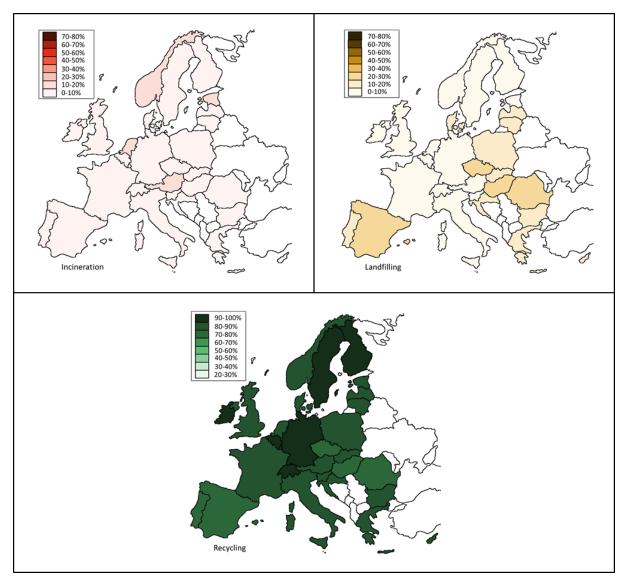


Figure 18: ZnO ENM waste stream shares of landfilling, incineration and recycling in European countries

5. DISCUSSION

This report presents a first country-specific ENM release model for production, manufacturing and consumption for 5 different ENMs across Europe, including the different applications. The main goal of this country specific assessment is to provide information where the ENM end up in waste management processes. Such knowledge is crucial to understand and improve the ENM release to the environment from such processes in Europe. A next step in the NanoFASE project is to go from countries as a whole to specific points or grid cells where waste treatment based release takes place.

In this study, we have chosen to start from an estimate of the total of ENMs produced in Europe, and implicitly assumed that these ENMs are also manufactured (incorporated in products) and subsequently used in Europe. These ENMs are then distributed over various applications and the countries, after which release factors are applied to assess the environmental releases.

During this process, major uncertainties come in at various stages, including:

- The study starts from an estimate of the total production of each ENM in Europe. This report shows that this number is rather uncertain for most ENMs, different estimates in literature being several orders of magnitude apart are not uncommon. This starting value may be the largest uncertainty.
- The assumption that whenever the production of an ENM takes place in Europe, also the manufacturing and consumption take place within the European borders (here constituted by the EU28 countries plus Norway and Switzerland). In practice however, import and export of produced nanomaterials and also manufactured products incorporating nanomaterials will likely take place between the EU and other regions in the world (e.g. East Asia, North America, etc.)
- The distribution of production, manufacturing and consumption to the individual product categories and the individual countries is done using proxy parameters, since no actual data are available on the split. In addition, the allocation of each product category to product applications does not account for the weight of the ENM in the products.
- The quality of the data on waste collection and treatment is poor for some countries. For 16 countries, data had to be taken from other countries. Sometimes this applied to only one waste category (such as Germany and Belgium), while for other countries such as Slovakia and Hungary, the management of almost all waste categories had to be approximated.
- Finally, for the estimation of the releases of ENMs from the various applications available information from literature sources is used, which is complemented by expert judgement. These releases are also subject to distinct uncertainties.

It is important that these uncertainties are taken into account when the data presented in this report are used. It should be stressed that this is a first version of the ENM release model at the level of individual European countries, and during the course of the NanoFASE project work will continue to further improve and refine this ENM flow inventory. In this study the aim was to build on existing information and publications, rather than to repeat the work. However, in some cases the information sources available were contradicting each other, and a choice had to be made. For instance, in the case of copper, further discussion and research is needed to better understand the products in which copper and copper oxide ENMs are used.

6. CONCLUSION AND NEXT STEPS

This report describes a first version of a European wide country ENM release model for 5 different ENMs: TiO2, ZnO, silver, copper (consisting of both elemental copper and copper oxide) and carbon black. The model provides for each stage, application and European country an estimate of the flow of ENMs and the releases to the environment. In addition, improved release factors and end-of-life pathways for the different ENMs are presented. Constant lifecycle parameters were broken down on a current one year release period, assuming that what has been emitted in previous years and eliminated again in the same years is likely to compensate each other. All of these have significant uncertainties, mostly resulting from a poor availability of data on actual production, use and releases of ENMs. The estimates presented in this report are mainly based on literature sources and expert judgements.

With this first version of the ENM release model at country level, the work is not completed. During the remainder of the NanoFASE project, work will continue to further improve the inventory and the quantification of releases to the environment.

- First, further work is needed to refine the currently used factors to split ENMs to different applications, for instance for copper. Also, the release factors may be further improved. This is clearly something requiring further discussion between the NanoFASE partners and other experts in the field, which will be taken up in the next phase of the project.
- Another issue which will be addressed in the next phase is the uptake of the updated information on release factors and end-of-life pathways as presented in Section 4.2 with the country specific PMC results shown in Section 4.1. This will not only lead to an improved ENM release model but also ensure harmonization between the different models which are used in the NanoFASE project.
- Another issue which will be addressed as further work is the flows of ENMs coming from recycling and other end-of-life pathways, and how these flows feed back into the manufacturing and/or use phase of ENMs. This will further improve the release model developed in NanoFASE WP4.
- Finally, this inventory will be used as the basis for a high resolution spatially distributed model of ENM releases, which will be used as input for the ENM fate modellers in the NanoFASE project. The exact scope and format of this model is to be discussed further in the next months.

7. **REFERENCES**

Allied Market Research (2016). Europe Nanomaterials Market: Trends, Share, Opportunities and Forecasts 2014 - 2022.

Boxall A.B.A., Chaudhry Q., Sinclair C., Jones A.D. and Aitken R. (2007): Current and future predicted environmental exposure to engineered nanoparticles; Central Science Laboratory, Sand Hutton, UK.

BRITISH GEOLOGICAL SURVEY, 2016. European mineral statistics 2010–14. Keyworth, Nottingham: British Geological Survey.

Caballero-Guzman, A., Sun, T., Nowack, B., 2015. Flows of engineered nanomaterials through the recycling process in Switzerland. Waste Manag. 36, 33–43. doi:10.1016/j.wasman.2014.11.006

Caballero-Guzman, Nowack, B., (2017), Flows of nanomaterials into the environment released from four specific applications during their life cycle: do they influence the entire system? In prepraration.

Ceresana. 2013. Market Study: Carbon Black (UC-5605). Ceresana Market Intelligence Consulting. <u>http://www.ceresana.com/en/market-studies/chemicals/carbon-black/</u>

EPA U. (2009) External Review Draft - Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency; Research Triangle Park, NC: p. 222. EPA/600/R-09/057.

ESIG (2015), Solvent VOC Emissions Inventories Position Paper – June 2015. European Solvents Industry Group. <u>http://www.esig.org/layout/uploads/2016/09/voc-inventory-esvoc-position-paper-2015.pdf</u>

European Commission (2012), Types and uses of nanomaterials, including safety aspects. Accompanying the Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee on the Second Regulatory Review on Nanomaterials, Staff working document.

European Commission, Joint Research Centre, Institure for Environment and Sustainability (2010). International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance.

Eurostat (2017), PRODCOM database with statistics on the production of manufactured goods in Europe. <u>http://ec.europa.eu/eurostat/web/prodcom</u>. Accessed 20 January 2017.

Future Markets (2012), The global market for nanomaterials 2002–2006: production volumes, revenues and end use markets.

Giese, B., Wigger, H., Steinfeldt, M., von Gleich, A., Gottschalk, F., in prep. Dynamics of Environmental Releases and Concentrations of Engineered Nanomaterials in Germany

Global Insight (2007), A study of the European Cosmetics Industry. Final Report prepared for European Commission, DG Enterprise and Industry, October 2007. http://ec.europa.eu/DocsRoom/documents/13125/attachments/1/translations/en/renditions/native http://ec.europa.eu/DocsRoom/documents/13125/attachments/1/translations/en/renditions/native http://ec.europa.eu/DocsRoom/documents/13125/attachments/1/translations/en/renditions/native

Gottschalk F., Sonderer T., Scholz R.W. and Nowack B. (2009): Modelled environmental concentrations of engineered nanomaterials (TiO₂, ZnO, Ag, CNT, fullerenes) for different regions. Environmental Science and Technology, 43, 9216-9222.

Gottschalk F., R. W. Scholz, and B. Nowack (2010) "Probabilistic material flow modeling for assessing the environmental exposure to compounds: Methodology and an application to engineered nano-TiO2 particles," Environ. Model. Softw., vol. 25, no. 3, pp. 320–332.

Gottschalk, F., Ort, C., Scholz, R.W., Nowack, B. (2011). Engineered nanomaterials in rivers – exposure scenarios for Switzerland at high spatial and temporal resolution. Environmental Pollution 159, 3439-3445.

Gotttschalk F., Kost E. and Nowack B. (2013a). Engineered nanomaterials in water and soils: A risk quantification based on probabilistic exposure and effect modelling. Environmental Toxicology and Chemistry 2013, 32, (6), 1278-1287.

Gottschalk F., Sun T. and Nowack B. (2013b). Environmental concentrations of engineered nanomaterials: Review of modelling and analytical studies. Environmental Pollution 2013, 181, (0), 287-300.

Gottschalk, F.; Lassen, C.; Kjoelholt, J.; Christensen, F.; Nowack, B. (2015). Modeling Flows and Concentrations of Nine Engineered Nanomaterials in the Danish Environment. Int. J. Environ. Res. Public Health 2015, 12, 5581-5602.

Gottschalk, F.; Nowack, B.; Lassen, C.; Kjølholt, J.; Christensen, F. (2015) Nanomaterials in the Danish Environment. Modelling Exposure of the Danish Environment to Selected Nanomaterials. Environmental Project No. 1639, 2015 from the Danish Environmental Protection Agency. Available online: http://www2.Mst.Dk/udgiv/publications/2015/01/978-87-93283-60-2.Pdf (accessed on 18 May 2015).

Hedbrant, J., Sörme, L. (2001). Data Vagueness and Uncertainties in Urban Heavy-Metal Data Collection. Water Air Soil Pollut. Focus 1, 43–53. doi:10.1023/A:1017591718463

Holden, P. A., Klaessig, F., Turco, R. F., Priester, J. H., Rico, C. M., Avila-Arias, H., Mortimer, M., Pacpaco, K. & Gardea-Torresdey, J. L. (2014). Evaluation of exposure concentrations used in assessing manufactured nanomaterial environmental hazards: are they relevant?. Environmental science & technology, 48(18), 10541-10551.

IARC (2010), IARC Monographs on the evaluation of carcinogenic risks to humans Volume 93: Carbon black, Titanium dioxide and Talc. World Health Organisation, International Agency for Research on Cancer, https://monographs.iarc.fr/ENG/Monographs/vol93/mono93.pdf

Kammer F. von der, Ferguson P.L., Holden P.A., Masion A., Rogers K.R., Klaine S.J., Koelmans A.A., Horne N., Unrine J.M. (2012). Analysis of engineered nanomaterials in complex matrices (environment and biota): General considerations and conceptual case studies. Environmental Toxicology and Chemistry 2012, 31, (1), 32-49.

Keller A.A., S. McFerran, A. Lazareva, and S. Suh (2013), Global life cycle releases of engineered nanomaterials, J. Nanoparticle Res., vol. 15, no. 6, 2013.

Laner, D., Rechberger, H., Astrup, T. (2015). Applying Fuzzy and Probabilistic Uncertainty Concepts to the Material Flow Analysis of Palladium in Austria. J. Ind. Ecol. 19, 1055–1069. doi:10.1111/jiec.12235

Nanotechnology Products Database." [Online]. Available: http://product.statnano.com/. Accessed February 2017.

Nanowerk (2012), New study shows that titanium dioxide nanoparticles are ubiquitous in food products, http://www.nanowerk.com/spotlight/spotid=24290.php

NANOWERK PRODUCT CATALOG." [Online]. Available: <u>http://nanowerk.com/nanocatalog/</u>. Accessed February 2017.

Piccinno, F.; Gottschalk, F.; Seeger, S.; Nowack, B., Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 2012, 14, (9), 1-11.

PlasticsEurope (2014), Plastics – the facts 2014/2015. Analysis of European Plastics production, demand and waste data. <u>http://www.plasticseurope.org/cust/documentrequest.aspx?DocID=62506</u>

Project on Emerging Nanotechnologies." [Online]. Available: http://www.nanotechproject.org/. Accessed February 2017.

Ricardo (2016), Ricardo Energy & Environment, Support for 3rd regulatory review on nanomaterials: Interim/background Report. WORKSHOP WORKING MATERIAL Report for European Commission DG Environment, ENV.A.3/ETU/2015/0030

Sun, T. Y., Bornhöft, N. A., Hungerbühler, K., & Nowack, B. (2016). Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. Environmental science & technology, 50(9), 4701-4711.

Sun, T.Y., Gottschalk, F., Hungerbühler, K., Nowack, B., 2014. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ. Pollut. 185, 69–76. doi:10.1016/j.envpol.2013.10.004

TDMA (2010): Industry responds to Nano-TiO2 study published in American Association for Cancer Research Journal. http://www.cefic.org/Documents/Industry%20sectors/Industry-responds-to-Nano-TiO2-study-published-in-American-Association-for-Cancer-Research-Journal.pdf

THE NANODATABASE." [Online]. Available: http://nanodb.dk/en/. Accessed February 2017.

Turner, D.A., Williams, I.D., Kemp, S. (2015). Greenhouse gas emission factors for recycling of sourcesegregated waste materials. Resour. Conserv. Recycl. 105, Part A, 186–197. doi:10.1016/j.resconrec.2015.10.026

Vílchez A., E. Fernández-Rosas, D. González-Gálvez, and S. Vázquez Campos (2015), "Nanomaterials release from nano-enabled products," in Indoor and Outdoor Nanoparticles: Determinants of Release and Exposure Scenarios, 1st ed., M. Viana, Ed. Springer International Publishing Switzerland 2015.

Walser, T., Gottschalk, F. (2014), Stochastic fate analysis of engineered nanoparticles in incineration plants. Journal of Cleaner Production. 80, 241-251.

Weidema, B.P., Wesnæs, M.S. (1996). Data quality management for life cycle inventories—an example of using data quality indicators. J. Clean. Prod. 4, 167–174. doi:10.1016/S0959-6526(96)00043-1

Weir, A., Westerhoff, P., Fabricius, L., & von Goetz, N. (2012). Titanium Dioxide Nanoparticles in Food and Personal Care Products. Environmental Science & Technology, 46(4), 2242–2250. http://doi.org/10.1021/es204168d

COUNTRY	SMELTER Cu	REFINED Cu	PRODUCTION VOLUMES	nano-CuO	nano-Cu⁰
(ISO3)	(1000 ton)	(1000 ton)	DISTRIBUTION (%)	(ton)	(ton)
AUT		83.2	1.85	0.83	0.018
BEL		387.3	8.60	3.87	0.086
BGR	305	234	11.97	5.39	0.12
СҮР		3.088	0.07	0.03	1
CZE					
DEU	351.1	676.9	22.84	10.28	0.228
DNK					
ESP	294.1	418.5	15.83	7.12	0.158
EST					
FIN	146.542	146.542	6.51	2.93	0.065
FRA					
GBR					
GRC					
HRV					
HUN					
IRL					
ITA		7.9	0.18	0.08	2
LTU					
LUX					
LVA					
MLT					
NLD					
POL	503.111	576.876	23.99	10.8	0.24
PRT					
ROU					
SVK					
SVN					
SWE	150	217.337	8.16	3.67	0.082

Appendix 1: Smelter and refined copper production volumes distribution per country, and derived distribution of nano-CuO and nano-Cu⁰ production per country

Appendix 2: Release factors adopted for this inventory, per ENM, stage and application

ENM	Stage	Application	Municipal waste water system	Surface water	Air	Soil	Waste incineration	Landfill	Recycling	Export	Other waste management	Transformation into other forms	Source / Comments
	Proc	duction	0.5%		0.5%								Gottschalk and Nowack (2011) report 0-2% release during production (1% assumed as average) split equally over air and surface water
		Sunscreens	2.0%		0.0%		1.0%				2.0%		From Gottschalk et al. (2015b),
		Cosmetics	2.0%		0.0%		1.0%				2.0%		photostable TiO ₂ release during production of cosmetics
		Paints	0.3%	0.3%			2.0%						
		Electronics and appliances	0.3%	0.3%			2.0%						
		Cleaning agents	0.3%	0.3%			2.0%						
		Filters	0.3%	0.3%			2.0%						
		Plastics	0.3%	0.3%			2.0%						
TiO ₂	ıring	Coatings	0.3%	0.3%			2.0%						
Ξ	Manufacturing	Glass and ceramics	0.3%	0.3%			2.0%						From Gottschalk et al. (2015b),
	Mai	Sporting goods	0.3%	0.3%			2.0%						photostable TiO₂ release
		Waste water treatment	0.3%	0.3%			2.0%						during production of
		Batteries	0.3%	0.3%			2.0%						pigments, paints, lacquers
		Food	0.3%	0.3%			2.0%						and adhesives
		Textiles	0.3%	0.3%			2.0%						
		Light bulbs	0.3%	0.3%			2.0%						
		Spray	0.3%	0.3%			2.0%						
		Metals	0.3%	0.3%			2.0%						
		Cement	0.3%	0.3%			2.0%						
		Ink	0.3%	0.3%			2.0%						
		Paper	0.3%	0.3%			2.0%						
		Sunscreens	85.5%	9.5%			1.3%	1.8%	2.0%				
	tion	Cosmetics	85.5%	9.5%			1.3%	1.8%	2.0%				Directly from
	Consumption	Paints	0.5%		0.3%	0.3%		29.7%	69.3%				Gottschalk et al.
	Cons	Electronics and appliances	30.0%				3.5%	7.0%	45.5%	14.0%			(2015b)

NanoFASE

D4.1 – Inventory of estimates of ENMs and nano-enabled products value chain

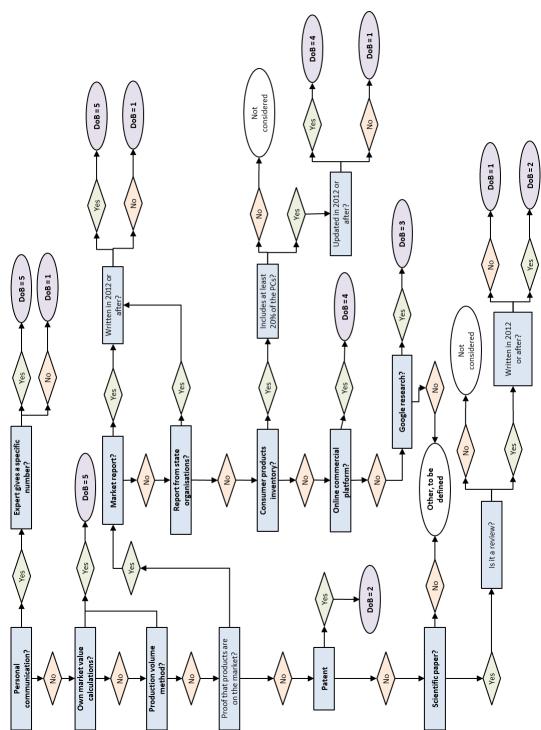
		Cleaning agents	95.0%				1.3%	1.8%	2.0%			
		Filters	24.0%		6.0%		3.5%	7.0%	45.5%	14.0%		-
		Plastics	3.0%				24.3%	34.0%	38.8%			-
		Coatings	28.0%		3.5%	3.5%	16.3%	22.8%	26.0%			-
		Glass and ceramics	35.0%				6.5%	13.0%	45.5%			
		Sporting goods	2.8%		1.2%		24.0%	33.6%	38.4%			
		Waste water treatment	98.0%				0.8%	1.2%				
		Batteries					30.0%	45.0%	25.0%			
		Food	90.0%				4.0%	6.0%				
		Textiles	2.4%		0.6%		6.8%	30.1%	27.2%	33.0%		
		Light bulbs					25.0%	35.0%	40.0%			
		Spray	85.5%		9.5%		1.3%	1.8%	2.0%			_
		Metals	5.0%				1.9%	2.9%	90.3%			
		Cement	1.0%					29.7%	69.3%			
		Ink					3.0%	7.0%	70.0%	20.0%		
		Paper					3.0%	7.0%	70.0%	20.0%		Gottschalk and
	Proc	duction	0.5%		0.5%							Nowack (2011) report 0-2% release during production (1% assumed as average) split equally over air and surface water
		Sunscreens	2.0%		0.0%		1.0%				2.0%	From Gottschalk et al. (2015b),
		Cosmetics	2.0%		0.0%		1.0%				2.0%	photostable TiO ₂ release during production of cosmetics
		Paints	0.3%	0.3%			2.0%					
		Plastics	0.3%	0.3%			2.0%					
ZnO	ing	Glass	0.3%	0.3%			2.0%					
2	Manufacturing	Electronics and appliances	0.3%	0.3%			2.0%					From Gottschalk et al. (2015b),
	Ma	Filters	0.3%	0.3%			2.0%					photostable TiO ₂ release
		Cleaning agents	0.3%	0.3%			2.0%					during production of
		Food	0.3%	0.3%			2.0%					pigments, paints, lacquers
		Textiles	0.3%	0.3%			2.0%					 and adhesives
		Metals	0.3%	0.3%			2.0%					1
		Wood	0.3%	0.3%			2.0%					
		Paper	0.3%	0.3%			2.0%					
	u	Sunscreens	85.5%	9.5%			1.3%	1.8%	2.0%			
	Consumption	Cosmetics	85.5%	9.5%			1.3%	1.8%	2.0%			Directly from
	nsuc	Paints	17.5%		8.8%	8.8%		19.5%	45.5%			 Gottschalk et al. (2015b)
	3	Plastics	80.0%				5.0%	7.0%	8.0%			

NanoFASE

D4.1 – Inventory of estimates of ENMs and nano-enabled products value chain

		Glass	35.0%				6.5%	13.0%	45.5%			
		Electronics and appliances	30.0%				3.5%	7.0%	45.5%	14.0%		
		Filters	24.0%		6.0%		3.5%	7.0%	45.5%	14.0%		
		Cleaning agents	95.0%				1.3%	1.8%	2.0%			
		Food	90.0%				4.0%	6.0%				_
		Textiles	48.0%		12.0%		2.8%	12.4%	11.2%	13.6%		_
		Metals	5.0%				1.9%	2.9%	90.3%			_
		Wood	30.0%				70.0%					_
		Paper					3.0%	7.0%	70.0%	20.0%		
	Pro	duction	0.5%		0.5%							Gottschalk and Nowack (2011) report 0-2% release during production (1% assumed as average) split equally over air and surface water
		Electronics and appliances	0.3%	0.3%			2.0%					
		Textiles	0.3%	0.3%			2.0%					From Gottschalk et al. (2015b), photostable TiO₂ release during
		Cosmetics	0.3%	0.3%			2.0%					
		Food	0.3%	0.3%			2.0%					
	Manufacturing	Cleaning agents	0.3%	0.3%			2.0%					
		Medical technology	0.3%	0.3%			2.0%					
		Plastics	0.3%	0.3%			2.0%					
	Janu	Paints	0.3%	0.3%			2.0%					production of pigments,
	~	Metals	0.3%	0.3%			2.0%					paints, lacquers
Ag		Glass and ceramics	0.3%	0.3%			2.0%					and adhesives
		Soil remediation	0.3%	0.3%			2.0%					-
		Filters	0.3%	0.3%			2.0%					-
		Diapers	0.3%	0.3%			2.0%					-
		Paper	0.3%	0.3%			2.0%					
		Electronics and appliances	30.0%				4.2%	6.3%	45.5%	14.0%		
	Consumption	Textiles	48.0%		12.0%		2.8%	12.4%	11.2%	13.6%		-
		Cosmetics	85.5%	9.5%			1.3%	1.8%	2.0%			-
		Food	90.0%				4.0%	6.0%				
		Cleaning agents	95.0%				1.3%	1.8%	2.0%			Directly from Gottschalk et al.
	Consu	Medical technology	5.0%				95.0%					(2015b)
		Plastics	80.0%				5.0%	7.0%	8.0%			
		Paints	17.5%		8.8%	8.8%		19.5%	45.5%			
		Metals	5.0%				1.9%	2.9%	90.3%			
		Glass and ceramics	35.0%				6.5%	13.0%	45.5%			

NanoFASE


D4.1 - Inventory of estimates of ENMs and nano-enabled products value chain

		Soil remediation				98.0%	0.8%	1.2%					
		Filters	24.0%		6.0%		4.2%	6.3%	45.5%	14.0%			
		Diapers	5.0%				95.0%						
		Paper					3.0%	7.0%	70.0%	20.0%			
	Prod	duction	0.5%		0.5%								Gottschalk and Nowack (2011) report 0-2% release during production (1% assumed as average) split equally over air and surface water
		Catalysts	0.3%	0.3%			2.0%						
		Electronics & Optics	0.3%	0.3%			2.0%						
		Coatings, paints and pigments	0.3%	0.3%			2.0%						
		Energy and Environment	0.3%	0.3%			2.0%						From Gottschalk
	<u>م</u>	Medical	0.3%	0.3%			2.0%						et al. (2015b),
	turin	Cosmetics	0.3%	0.3%			2.0%						photostable TiO₂ release
	ufac	Cosmetics	0.3%	0.3%			2.0%						during production of
	Manufacturing	Food and beverages	0.3%	0.3%			2.0%						pigments, paints, lacquers
0		Engine additive	0.3%	0.3%			2.0%						and adhesives
and CuO		Filters	0.3%	0.3%			2.0%						
Cu an		Paints	0.3%	0.3%			2.0%						
J		Welding nozzle	0.3%	0.3%			2.0%						
		Electronics	0.3%	0.3%			2.0%						
		Catalysts	74.0%	0.0%	25.0%	0.0%			1.0%	74.0%	0.0%	25.0%	
		Electronics & Optics	0.0%	0.0%	0.0%	0.0%	10.0%	20.0%	70.0%	0.0%	0.0%	0.0%	
		Coatings, paints and pigments Energy and	1.0%	1.0%	1.0%	1.0%			96.0%	1.0%	1.0%	1.0%	
		Environment	0.0%	0.0%	0.0%	0.0%	5.0%	10.0%	85.0%	0.0%	0.0%	0.0%	
	E	Medical	95.0%	0.0%	0.0%	0.0%			5.0%	95.0%	0.0%	0.0%	Lindoted as less
	nptic	Cosmetics	85.0%	0.0%	0.0%	10.0%	0.5%	1.5%	3.0%	85.0%	0.0%	0.0%	Updated release factors from
	Consumption	Cosmetics Food and	85.0%	0.0%	0.0%	10.0%	0.5%	1.5%	3.0%	85.0%	0.0%	0.0%	EMPA used in this study
		beverages	90.0%	0.0%	0.0%	0.0%	1.0%	2.5%	6.5%	90.0%	0.0%	0.0%	
		Engine additive	0.0%	0.0%	5.0%	0.0%			95.0%	0.0%	0.0%	5.0%	
		Filters	24.0%	0.0%	6.0%	0.0%	30.0%	40.0%		24.0%	0.0%	6.0%	
		Paints	0.5%	0.0%	0.3%	0.3%			99.0%	0.5%	0.0%	0.3%	
		Welding nozzle	0.0%	0.0%	0.0%	0.0%	5.0%	15.0%	80.0%	0.0%	0.0%	0.0%	
		Electronics	0.0%	0.0%	0.0%	0.0%	10.0%	20.0%	70.0%	0.0%	0.0%	0.0%	
Carbon	Proc	duction	0.5%		0.5%								Gottschalk and Nowack (2011) report 0-2% release during

NanoFASE

D4.1 – Inventory of estimates of ENMs and nano-enabled products value chain

											production (1% assumed as average) split equally over air and surface water
	Rubber products	0.5%	0.1%			2.0%					
	Rubber tyres	0.5%	0.1%			2.0%					
ing	Antifouling paints	0.5%	0.1%			2.0%					From Gottschalk et al. (2015b), carbon black
ctur	Filters	0.5%	0.1%			2.0%					release during
Manufacturing	Inks	0.5%	0.1%			2.0%					production of
Za	Others	0.5%	0.1%			2.0%					 paints, lacquers, pigments,
	Paints and varnishes	0.5%	0.1%			2.0%					cosmetics, etc.
	Plastic components	0.5%	0.1%			2.0%					
	Rubber products	0.1%		0.1%	0.1%	94.7%	5.0%				
	Rubber tyres	3.0%	8.0%	1.0%	4.0%	5.0%		79.0%			
u	Antifouling paints	1.0%	1.0%	1.0%	2.0%	50.0%	10.0%	35.0%			Directly from
npti	Filters		66.9%		0.1%	1.0%		32.0%			Gottschalk et al.
Consumption	Inks					10.0%		80.0%	10.0%		(2015b)
S	Others	0.1%	0.1%		0.1%	95.7%	2.0%	2.0%			
	Paints and varnishes	25.0%		5.0%		70.0%					
	Plastic components	5.0%	5.0%	5.0%	5.0%	50.0%	20.0%	10.0%			Expert judgement

Appendix 3: Decision tree for assessing the quality of the references used for allocations to product applications

Appendix 4: References used for the management of the waste categories

Country	Waste category	Reference
	Batteries	Elektroaltgeräte Koordinierungsstelle Austria GmbH - 2016 ¹
	WEEE	BLFUW - 2015 ²
	Textiles	BLFUW - 2015 ²
	Packaging	BLFUW - 2015 ²
Autria	Glass	BLFUW - 2015 ²
	Metals	BLFUW - 2015 ² ; Eurostat ³
	Paper	BLFUW - 2015 ²
	Plastic	BLFUW - 2015 ²
	Mixed municipal waste	BLFUW - 2015 ²
	Batteries	Perchards - 2015 ⁴
	WEEE	Steiger – 2014 ⁵ ; BAFU - 2015 ⁶
	Textiles	Coberec - 2016 ⁷
	Packaging	FostPlus - 2016 ⁸
Belgium	Glass	Eurostat ³ ; de Beer - 2012 ⁹
	Metals	Eurostat ³ ; de Beer - 2012 ⁹
	Paper	Eurostat ³ ; de Beer - 2012 ⁹
	Plastic	Eurostat ³ ; de Beer - 2012 ⁹
	Mixed municipal waste	Wille et al 2015 ¹⁰
	Batteries	Perchards - 2015 ⁴
	WEEE	Baldé et al 2015 ¹¹ ; Eurostat ³
	Textiles	Egis International - 2011 ¹² ; Eurostat ³
	Packaging	Ministry of Environment - 2016 (Personal communication)
Bulgaria	Glass	Egis International - 2011 ¹² ; Eurostat ³
	Metals	Egis International - 2011 ¹² ; Eurostat ³
	Paper	Egis International - 2011 ¹² ; Eurostat ³
	Plastic	Egis International - 2011 ¹² ; Eurostat ³
	Mixed municipal waste	Ministry of Environment and Water - 2014 ¹³
	Batteries	Perchards - 2015 ⁴
	WEEE	Hrvatska AZO - 2016a ¹⁴
	Textiles	Stanic-Maruna and Fellner - 2012 ¹⁵ ; Eurostat ³ ; Hrvatska AZO - 2016b ¹⁶
	Packaging	Hrvatska AZO - 2016a ¹⁴
Croatia	Glass	Stanic-Maruna and Fellner - 2012 ¹⁵ ; Eurostat ³ ; Hrvatska AZO - 2016b ¹⁶
	Metals	Stanic-Maruna and Fellner - 2012 ¹⁵ ; Eurostat ³ ; Hrvatska AZO - 2016b ¹⁶
	Paper	Stanic-Maruna and Fellner - 2012 ¹⁵ ; Eurostat ³ ; Hrvatska AZO - 2016b ¹⁶
	Plastic	Stanic-Maruna and Fellner - 2012 ¹⁵ ; Eurostat ³ ; Hrvatska AZO - 2016b ¹⁶
	Mixed municipal waste	Hrvatska AZO - 2016b ¹⁶
	Batteries	Perchards - 2015 ⁴
	WEEE	Hrvatska AZO - 2016a ¹⁴
	Textiles	Stanic-Maruna and Fellner - 2012 ¹⁵ ; Eurostat ³ ; Hrvatska AZO - 2016b ¹⁶
	Packaging	Green Dot - 2016 ¹⁷
Cyprus	Glass	Zorpas et al - 2015 ¹⁸ ; Eurostat ³
	Metals	Zorpas et al - 2015 ¹⁸ ; Eurostat ³
	Paper	Zorpas et al - 2015 ¹⁸ ; Eurostat ³
	Plastic	Static-Maruna and Fellner - 2012 ¹⁵ ; Eurostat ³ ; Hrvatska AZO - 2016b ¹⁶
	Mixed municipal waste	Department of Environment (Personal communication)

Country	Waste category	Reference					
	Batteries	Perchards - 2015 ⁴					
	WEEE	MAPAMA - 2016 ¹⁹ ; Eurostat ³					
	Textiles	MAPAMA - 2016 ¹⁹ ; Eurostat ³					
	Packaging	MAPAMA - 2016 ¹⁹					
Czech	Glass	MAPAMA - 2016 ¹⁹ ; Eurostat ³ ; AFESD - 2015 ²⁰					
Republic	Metals	MAPAMA - 2016 ¹⁹ ; Eurostat ³					
	Paper	MAPAMA - 2016 ¹⁹ ; Eurostat ³ ; AFESD - 2015 ²⁰					
	Plastic	MAPAMA - 2016 ¹⁹ ; Eurostat ³					
	Mixed municipal waste	Ministry of the Environment - 2014 ²¹					
	Batteries	Perchards - 2015 ⁴					
	WEEE	Toft et al - 2016 ²²					
	Textiles	Tojo et al - 2012 ²³					
	Packaging	Petersen et al - 2014 ²⁴ ; Toft et al - 2016 ²²					
Denmark	Glass	Petersen et al - 2014 ²⁴ ; Toft et al - 2016 ²²					
	Metals	Petersen et al - 2014 ²⁴ ; Toft et al - 2016 ²²					
	Paper	Petersen et al - 2014 ²⁴ ; Toft et al - 2016 ²²					
	Plastic	Petersen et al - 2014 ²⁴ ; Toft et al - 2016 ²²					
	Mixed municipal waste	Eurostat ³					
	Batteries	Perchards - 2015 ⁴					
	WEEE	Keskkonnaagentuur - 2016 ²⁵ ; Mattson - 2016 ²⁶ ; RECO Baltic 21 Tech - 2012 ²⁷					
	Textiles	RECO Baltic 21 Tech - 2012 ²⁷ ; Eurostat ³					
	Textiles	Estonian Institute for Sustainable Development & SEI Tallin -					
Estonia	Packaging	2014 ²⁸ ; Mattson - 2016 ²⁶					
	Glass	Mattson - 2016 ²⁶ ; RECO Baltic 21 Tech - 2012 ²⁷					
	Metals	RECO Baltic 21 Tech - 2012 ²⁷ ; Eurostat ³					
	Paper	Mattson - 2016 ²⁶ ; RECO Baltic 21 Tech - 2012 ²⁷					
	Plastic	Mattson - 2016 ²⁶ ; RECO Baltic 21 Tech - 2012 ²⁷					
	Mixed municipal waste	Eurostat ³					
	Batteries	Perchards - 2015 ⁴					
	WEEE	Liikanen et al - 2016 ²⁹ ; Statistics Finland - 2015 ³⁰ ; Seyring et al - 2015 ³¹					
	Textiles	Tojo et al - 2012 ²³					
	Packaging	ymparisto.fi ³²					
Finland	Glass	Liikanen et al - 2016 ²⁹ ; Statistics Finland - 2015 ³⁰ ; Eurostat ³					
	Metals	Liikanen et al - 2016 ²⁹ ; Statistics Finland - 2015 ³⁰ ; Eurostat ³					
	Paper	Liikanen et al - 2016 ²⁹ ; Statistics Finland - 2015 ³⁰					
	Plastic	Liikanen et al - 2016 ²⁹ ; Statistics Finland - 2015 ³⁰					
	Mixed municipal waste	Statistics Finland - 2015 ³⁰					
	Batteries	Perchards - 2015 ⁴					
	WEEE	ADEME - 2010 ³³ , 2015a ³⁴ ; Eurostat ³					
	Textiles	ADEME - 2010 ³³ , 2015b ³⁵ ; Eurostat ³					
	Packaging	Eco-Emballages and Adelphe - 2015 ³⁶					
France	Glass	ADEME - 2010 ³³ ; Eurostat ³					
	Metals	ADEME - 2010 ³³ ; Eurostat ³					
	Paper	ADEME - 2010 ³³ ; Eurostat ³					
	Plastic	ADEME - 2010 ³³ ; Eurostat ³					
	Mixed municipal waste	Eurostat ³					

Country	Waste category	Reference
	Batteries	Perchards - 2015 ⁴
	WEEE	Ear - 2016 ³⁷ ; Eurostat ³
	Textiles	FTR - 2015 ³⁸
	Packaging	Schüler et al - 2015 ³⁹ ; Eurostat ³ ; Toft et al - 2016 ²²
Germany	Glass	Plastic Zero - 2014 ⁴⁰ ; Eurostat ³
	Metals	Plastic Zero - 2014 ⁴⁰ ; Eurostat ³
	Paper	Plastic Zero - 2014 ⁴⁰ ; Eurostat ³
	Plastic	Plastic Zero - 2014 ⁴⁰ ; Eurostat ³
	Mixed municipal waste	Eurostat ³
	Batteries	Perchards - 2015 ⁴
	WEEE	Hrvatska AZO - 2016a ¹⁴
	Textiles	Papagiorgou et al - 2009 ⁴¹ ; Eurostat ³
	Packaging	Kalogirou and Sakalis - 2016 ⁴²
Greece	Glass	Papagiorgou et al - 2009 ⁴¹ ; Eurostat ³
	Metals	Papagiorgou et al - 2009 ⁴¹ ; Eurostat ³
	Paper	Papagiorgou et al - 2009 ⁴¹ ; Eurostat ³
	Plastic	Papagiorgou et al - 2009 ⁴¹ ; Eurostat ³
	Mixed municipal waste	Eurostat ³
	Batteries	Perchards - 2015 ⁴
	WEEE	MAPAMA - 2016 ¹⁹ ; Eurostat ³
	Textiles	MAPAMA - 2016 ¹⁹ ; Eurostat ³
	Packaging	MAPAMA - 2016 ¹⁹
Hungary	Glass	MAPAMA - 2016 ¹⁹ ; Eurostat ³
5,5	Metals	MAPAMA - 2016 ¹⁹ ; Eurostat ³
	Paper	MAPAMA - 2016 ¹⁹ ; Eurostat ³
	Plastic	MAPAMA - 2016 ¹⁹ ; Eurostat ³
	Mixed municipal waste	Eurostat ³
	Batteries	Perchards - 2015 ⁴
	WEEE	McCoole et al - 2013 ⁴³ ; WEEE Ireland - 2016 ⁴⁴ ; EPA - 2014 ⁴⁵
	Textiles	McCoole et al - 2013 ⁴³ ; EPA - 2014 ⁴⁵ ; Eurostat ³
	Packaging	Personal communication from EPA
Ireland	Glass	McCoole et al - 2013 ⁴³ ; Eurostat ³ ; EPA - 2014 ⁴⁵
	Metals	McCoole et al - 2013 ⁴³ ; Eurostat ³ ; EPA - 2014 ⁴⁵
	Paper	McCoole et al - 2013 ⁴³ ; Eurostat ³ ; EPA - 2014 ⁴⁵
	Plastic	McCoole et al - 2013 ⁴³ ; Eurostat ³ ; EPA - 2014 ⁴⁵
	Mixed municipal waste	EPA - 2014 ⁴⁵
	Batteries	Perchards - 2015 ⁴
	WEEE	ISPRA - 2015 ⁴⁶ ; Di Maria et al - 2015 ⁴⁷
	Textiles	ISPRA - 2015 ⁴⁶ ; Di Maria et al - 2015 ⁴⁷
	Packaging	ISPRA - 2015 ⁴⁶
Italy	Glass	ISPRA - 2015 ⁴⁶ ; Di Maria et al - 2015 ⁴⁷
,	Metals	ISPRA - 2015 ⁴⁶ ; Di Maria et al - 2015; Eurostat ³
	Paper	ISPRA - 2015 ⁴⁶ ; Di Maria et al - 2015 ⁴⁷
	Plastic	ISPRA - 2015 ⁴⁶ ; Di Maria et al - 2015 ⁴⁷
		1

Country	Waste category	Reference				
	Batteries	Perchards - 2015 ⁴				
	WEEE	Hrvatska AZO - 2016a ¹⁴				
	Textiles	Teibe et al - 2013 ⁴⁸ ; Eurostat ³				
	Packaging	Hrvatska AZO - 2016a ¹⁴				
Latvia	Glass	Teibe et al - 2013 ⁴⁸ ; Eurostat ³				
	Metals	Teibe et al - 2013 ⁴⁸ ; Eurostat ³				
	Paper	Teibe et al - 2013 ⁴⁸ ; Eurostat ³				
	Plastic	Teibe et al - 2013 ⁴⁸ ; Eurostat ³				
	Mixed municipal waste	Eurostat ³				
	Batteries	Perchards - 2015 ⁴				
	WEEE	MAPAMA - 2016 ¹⁹ ; Eurostat ³				
	Textiles	Teibe et al - 2013 ⁴⁸ ; Eurostat ³				
	Packaging	Personal communication from Inga Latveliene, EPA; MAPAMA - 2016 ¹⁹ ; Eurostat ³				
Lithuania	Glass	Teibe et al - 2013 ⁴⁸ ; Eurostat ³				
	Metals	Teibe et al - 2013 ⁴⁸ ; Eurostat ³				
	Paper	Teibe et al - 2013 ⁴⁸ ; Eurostat ³				
	Plastic	Teibe et al - 2013 ⁴⁸ ; Eurostat ³				
	Mixed municipal waste	Eurostat ³				
	Batteries	Perchards - 2015 ⁴				
	WEEE	MDI - 2015 ⁴⁹ ; MDI - 2014 ⁵⁰ ; Eurostat ³				
	Textiles	Administration de l'Environnement ⁵¹ ; MDI - 2014 ⁵⁰ ; Eurostat ³				
	Packaging	Administration de l'Environnement ⁵¹				
Luxembourg	Glass	Administration de l'Environnement ⁵¹ ; Eurostat ³ ; MDI - 2014 ⁵⁰				
Laxembourg	Metals	MDI - 2014 ⁵⁰ ; Eurostat ³				
	Paper	Administration de l'Environnement ⁵¹ ; Eurostat ³ ; MDI - 2014 ⁵⁰				
	Plastic	Administration de l'Environnement ⁵¹ ; Eurostat ³ ; MDI - 2014 ⁵⁰				
	Mixed municipal waste	Eurostat ³				
	Batteries	Perchards - 2015 ⁴				
	Datteries	RECO Baltic 21 Tech - 2012 ²⁷ ; Eurostat ³ ; Personal communication				
	WEEE	from the Environment and Resources Authority				
		Eurostat ³ ; Personal communication from the Environment and				
	Textiles	Resources Authority				
Malta	Packaging	Eurostat ³ ; Personal communication from the Environment and Resources Authority				
	Glass	Eurostat ³ ; Zorpas et al - 2015 ¹⁸				
	Metals	Eurostat ³ ; Zorpas et al - 2015 ¹⁸				
	Paper	Eurostat ³ ; Zorpas et al - 2015 ¹⁸				
	Plastic	Teibe et al – 2013 ⁴⁸ ; Eurostat ³				
	Mixed municipal waste	Eurostat ³				
	Batteries	Perchards - 2015 ⁴				
	WEEE	Huisman et al - 2012 ⁵² ; Rijkswaterstaat - 2016 ⁵³				
	Textiles	van de Wiel - 2013 ⁵⁴				
	Packaging	Afvalfonds Verpakkingen - 2016 ⁵⁵ ; Rijkswaterstaat - 2016 ⁵³ ; Eurostat ³				
Netherlands	Glass	Rijkswaterstaat - 2016 ⁵³ ; Eurostat ³				
	Metals	Rijkswaterstaat - 2016 ⁵³ ; Eurostat ³				
		Rijkswaterstaat - 2016 ⁵³ ; Eurostat ³				
	Paper					
	Plastic	Rijkswaterstaat - 2016 ⁵³ ; Eurostat ³				

Batteries Perchards - 2015 ⁴ WEEE Norwegian Environment Agency - 2013 ⁴⁶ ; Ellyin - 2012 ⁵⁷ ; Eurostat ³ Packaging Petersen et al - 2014 ²⁴ Packaging Petersen et al - 2014 ²⁴ Metals Eurostat ³ ; Petersen et al - 2014 ²⁴ Paper Eurostat ³ ; Petersen et al - 2014 ²⁴ Paper Eurostat ³ ; Petersen et al - 2014 ²⁴ Paper Eurostat ³ ; Petersen et al - 2014 ²⁴ Paper Eurostat ³ ; Petersen et al - 2014 ²⁴ WEE Personal communication from the Executive Environmental Agency of Bulgaria Textiles Gorska et al - 2015 ⁵⁸ ; den Boer et al - 2010 ⁵⁹ , Eurostat ³ Packaging Ministry of Environment - 2016 (Personal communication) Glass Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Metals Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Mixed municipal waste Eurostat ³ Paper Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Mixed municipal waste Eurostat ³ Batteries Perchards - 2015 ⁴ WEEE Perchards - 2015 ⁴ Mixed municipal waste Eurostat ³ Paper Magrinho and Semiao - 20	Country	Waste category	Reference					
Textiles Tojo et al - 2012 ²³ Packaging Petersen et al - 2014 ²⁴ , Toft et al - 2016 ²² Glass Eurostat ² , Petersen et al - 2014 ²⁴ Metals Eurostat ² , Petersen et al - 2014 ²⁴ Paper Eurostat ² , Petersen et al - 2014 ²⁴ Mixed municipal waste Eurostat ³ Batteries Perchards - 2015 ⁴ WEEE Bronal communication from the Executive Environmental Agency of Bulgaria Textiles Gorske et al - 2015 ⁵⁶ , den Boer et al - 2010 ⁵⁹ , Eurostat ³ Packaging Ministry of Environment - 2016 (Personal communication) Glass Eurostat ³ , den Boer et al - 2010 ⁵⁹ Metals Eurostat ³ , den Boer et al - 2010 ⁵⁹ Metals Eurostat ³ , den Boer et al - 2010 ⁵⁹ Patric Eurostat ³ , den Boer et al - 2010 ⁵⁹ Mixed municipal waste Eurostat ³ VetEE Eurostat ³ Patrics Perchards - 2015 ⁴ WetE Eurostat ³ Patrics Perchards - 2015 ⁴ WetE Eurostat ³ Patrics Magrinho and Semiao - 2008 ⁴⁰ ; Eurostat ³ Paper Mag			Perchards - 2015 ⁴					
Textiles Tojo et al - 2012 ²³ Packaging Petersen et al - 2014 ²⁴ , Toft et al - 2016 ²² Glass Eurostat ² , Petersen et al - 2014 ²⁴ Metals Eurostat ² , Petersen et al - 2014 ²⁴ Paper Eurostat ² , Petersen et al - 2014 ²⁴ Mixed municipal waste Eurostat ³ Batteries Perchards - 2015 ⁴ WEEE Bronal communication from the Executive Environmental Agency of Bulgaria Textiles Gorske et al - 2015 ⁵⁶ , den Boer et al - 2010 ⁵⁹ , Eurostat ³ Packaging Ministry of Environment - 2016 (Personal communication) Glass Eurostat ³ , den Boer et al - 2010 ⁵⁹ Metals Eurostat ³ , den Boer et al - 2010 ⁵⁹ Metals Eurostat ³ , den Boer et al - 2010 ⁵⁹ Patric Eurostat ³ , den Boer et al - 2010 ⁵⁹ Mixed municipal waste Eurostat ³ VetEE Eurostat ³ Patrics Perchards - 2015 ⁴ WetE Eurostat ³ Patrics Perchards - 2015 ⁴ WetE Eurostat ³ Patrics Magrinho and Semiao - 2008 ⁴⁰ ; Eurostat ³ Paper Mag		WEEE	Norwegian Environment Agency - 2013 ⁵⁶ ; Ellvin - 2012 ⁵⁷ ; Eurostat ³					
Norway Glass Eurostat ³ ; Petersen et al - 2014 ²⁴ Metals Eurostat ³ ; Petersen et al - 2014 ²⁴ Paper Eurostat ³ ; Petersen et al - 2014 ²⁴ Plastic Eurostat ³ ; Petersen et al - 2014 ²⁴ Mixed municipal waste Eurostat ³ ; Batteries Perchards - 2015 ⁴ WEEE Personal communication from the Executive Environmental Agency of Bulgaria Textiles Gorska et al - 2015 ³⁴ ; den Boer et al - 2010 ⁵⁹ ; Eurostat ³ Packaging Ministry of Environment - 2016 (Personal communication) Glass Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Metals Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Pater Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Mixed municipal waste Eurostat ³ ; den Boer et al - 2010 ⁵⁹ VEEE Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Mixed municipal waste Eurostat ³ Packaging MAPAMA - 2016 ¹⁹ Textiles Eurostat ³ Metals Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Pakaging Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Metals Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³		Textiles						
Norway Glass Eurostat ³ ; Petersen et al - 2014 ²⁴ Metals Eurostat ³ ; Petersen et al - 2014 ²⁴ Paper Eurostat ³ ; Petersen et al - 2014 ²⁴ Plastic Eurostat ³ ; Petersen et al - 2014 ²⁴ Mixed municipal waste Eurostat ³ ; Batteries Perchards - 2015 ⁴ WEEE Personal communication from the Executive Environmental Agency of Bulgaria Textiles Gorska et al - 2015 ³⁴ ; den Boer et al - 2010 ⁵⁹ ; Eurostat ³ Packaging Ministry of Environment - 2016 (Personal communication) Glass Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Metals Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Pater Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Mixed municipal waste Eurostat ³ ; den Boer et al - 2010 ⁵⁹ VEEE Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Mixed municipal waste Eurostat ³ Packaging MAPAMA - 2016 ¹⁹ Textiles Eurostat ³ Metals Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Pakaging Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Metals Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³		Packaging	, ,					
Metals Eurostat ³ ; Petersen et al - 2014 ⁷⁴ Paper Eurostat ³ ; Petersen et al - 2014 ⁷⁴ Plastic Eurostat ³ ; Petersen et al - 2014 ²⁴ Mixed municipal waste Eurostat ³ Batteries Perchards - 2015 ⁴ WEEE Personal communication from the Executive Environmental Agency of Bulgaria Textiles Gorska et al - 2015 ⁵⁸ ; den Boer et al - 2010 ⁵⁹ ; Eurostat ³ Packaging Ministry of Environment - 2016 (Personal communication) Glass Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Metals Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Paper Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Mixed municipal waste Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Mixed municipal waste Eurostat ³ ; den Boer et al - 2010 ⁵⁹ WEEE Eurostat ³ ; MAPAMA - 2016 ¹⁹ Textiles Eurostat ³ Packaging MAPAMA - 2016 ¹⁹ Textiles Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Mixed municipal waste Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Mixed municipal waste Eurostat ³ Mixed municipal waste	Norway							
Paper Eurostat ³ : Petersen et al - 2014 ²⁴ Plastic Eurostat ³ : Petersen et al - 2014 ²⁴ Mixed municipal waste Eurostat ³ Batteries Perchards - 2015 ⁴ WEEE Personal communication from the Executive Environmental Agency of Bulgaria Textiles Gorsk et al - 2015 ⁵⁸ ; den Boer et al - 2010 ⁵⁹ ; Eurostat ³ Packaging Ministry of Environment - 2016 (Personal communication) Glass Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Metals Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Paper Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Mixed municipal waste Eurostat ³ Paterics Perchards - 2015 ⁴ WEEE Eurostat ³ Packaging MAPAMA - 2016 ¹⁹ Textiles Eurostat ³ Packaging MAPAMA - 2016 ¹⁹ Textiles Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³								
Plastic Eurostat ² ; Petersen et al - 2014 ²⁴ Mixed municipal waste Eurostat ³ Patteries Perchards - 2015 ⁴ WEEE Bulgaria Textiles Gorska et al - 2015 ³⁶ ; den Boer et al - 2010 ⁵⁹ ; Eurostat ³ Packaging Ministry of Environment - 2016 (Personal communication) Glass Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Metals Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Paper Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Plastic Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Plastic Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Plastic Eurostat ³ ; MapAMA - 2016 ¹⁹ VEEE Eurostat ³ ; MAPAMA - 2016 ¹⁹ Textiles Eurostat ³ Packaging MAprinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Metals Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Mixed municipal waste Eurostat ³ Metals Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³								
Mixed municipal waste Eurostat ³ Batteries Perchards - 2015 ⁴ WEEE Bulgaria Textiles Gorska et al - 2015 ¹⁸ ; den Boer et al - 2010 ⁵⁹ ; Eurostat ³ Packaging Ministry of Environment - 2016 (Personal communication) Glass Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Metals Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Paper Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Mixed municipal waste Eurostat ³ Mixed municipal waste Eurostat ³ Mixed municipal waste Eurostat ³ Paper Eurostat ³ Mixed municipal waste Eurostat ³ Mixed municipal waste Eurostat ³ Packaging MAPAMA - 2016 ¹⁹ YEEE Eurostat ³ Packaging MAPAMA - 2016 ¹⁹ Packaging Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Metals Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Metals Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³		· · ·						
Batteries Perchards - 2015 ⁴ WEEE Personal communication from the Executive Environmental Agency of Bulgaria Textiles Gorska et al - 2015 ⁵⁹ ; den Boer et al - 2010 ⁵⁹ ; Eurostat ³ Packaging Ministry of Environment - 2016 (Personal communication) Glass Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Metals Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Paper Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Plastic Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Plastic Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Mixed municipal waste Eurostat ³ VEEE Eurostat ³ ; MAPAMA - 2016 ¹⁹ Textiles Eurostat ³ Packaging MAPAMA - 2016 ¹⁹ Textiles Eurostat ³ Packaging MAPAMA - 2016 ¹⁹ Metals Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Patic Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³								
WEEE Personal communication from the Executive Environmental Agency of Bulgaria Textiles Gorska et al - 2015 ³⁸ ; den Boer et al - 2010 ³⁹ ; Eurostat ³ Packaging Ministry of Environment - 2016 (Personal communication) Glass Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Metals Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Paper Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Plastic Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Mixed municipal waste Eurostat ³ ; den Boer et al - 2010 ⁵⁹ MEEE Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Textiles Perchards - 2015 ⁴ WEEE Eurostat ³ ; den Boer et al - 2010 ⁵⁹ Textiles Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁹ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁹ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁹ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁹ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁹ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁹ ; Eurostat ³ Paper Ciuta et al - 2015 ⁶¹ ; Eurostat ³ Paper Perchards - 2015 ⁶¹ ; Eurostat ³								
PolandTextilesGorska et al - 2015 ⁵⁵ ; den Boer et al - 2010 ⁵⁵ ; Eurostat ³ PackagingMinistry of Environment - 2016 (Personal communication)GlassEurostat ³ ; den Boer et al - 2010 ⁵⁹ PaperEurostat ³ ; den Boer et al - 2010 ⁵⁹ PlasticEurostat ³ ; den Boer et al - 2010 ⁵⁹ Mixed municipal wasteEurostat ³ ; den Boer et al - 2010 ⁵⁹ Mixed municipal wasteEurostat ³ ; den Boer et al - 2010 ⁵⁹ Mixed municipal wasteEurostat ³ ; den Boer et al - 2010 ⁵⁹ MetEEEurostat ³ ; den Boer et al - 2016 ¹⁹ TextilesEurostat ³ PackagingMAPAMA - 2016 ¹⁹ GlassMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ MetalsMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ PaperMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ PaticMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ PaticMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ PaticMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ PaticMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ PaticMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ PaticPerchards - 2015 ⁴ WEEEMagalini et al - 2015 ⁶¹ ; Ecotic - 2015 ⁶² TextilesCiuta et al - 2015 ⁶² ; Ecotic - 2015 ⁶² TextilesCiuta et al - 2015 ⁶³ ; Eurostat ³ PaterCiuta et al - 2015 ⁶³ ; Eurostat ³ MetalsCiuta et al - 2015 ⁶⁴ ; Eurostat ³ MetalsCiuta et al - 2015 ⁶⁴ ; Eurostat ³ MetalsCiuta et al - 2015 ⁶⁴ ; Eurostat ³ MetalsParchards - 2015 ⁴ <td></td> <td></td> <td>Personal communication from the Executive Environmental Agency of</td>			Personal communication from the Executive Environmental Agency of					
Poland Packaging Ministry of Environment - 2016 (Personal communication) Glass Eurostat ³ , den Boer et al - 2010 ⁵⁹ Metals Eurostat ³ , den Boer et al - 2010 ⁵⁹ Paper Eurostat ³ , den Boer et al - 2010 ⁵⁹ Plastic Eurostat ³ , den Boer et al - 2010 ⁵⁹ Mixed municipal waste Eurostat ³ Batteries Perchards - 2015 ⁴ WEEE Eurostat ³ Textiles Eurostat ³ Packaging MAPAMA - 2016 ¹⁹ Textiles Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Plastic Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Plastic Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Plastic Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Plastic Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Plastic Ciuta et al - 2015 ⁶¹ ; Ecotic - 2015 ⁶² Textiles Ciuta et al - 2015 ⁶¹ ; Ecotic - 2015 ⁶² Textiles Ciuta et al - 2015 ⁶³ ; Eurostat ³ Packaging Ciuta et al - 2015 ⁶¹ ; Eu		Textiles						
Poland Glass Eurostat ² , den Boer et al - 2010 ⁵⁹ Metals Eurostat ² , den Boer et al - 2010 ⁵⁹ Paper Eurostat ³ , den Boer et al - 2010 ⁵⁹ Plastic Eurostat ³ , den Boer et al - 2010 ⁵⁹ Mixed municipal waste Eurostat ³ Batteries Perchards - 2015 ⁴ WEEE Eurostat ³ Packaging MAPAMA - 2016 ¹⁹ Glass Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Metals Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Mixed municipal waste Eurostat ³ Batteries Perchards - 2015 ⁴ WEEE Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Mixed municipal waste Eurostat ³ Batteries Perchards - 2015 ⁴ WEEE Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Glass Ciuta et al - 2015 ⁶¹ ; Ecrotic - 2015 ⁶² Textiles Ciuta et al - 2015 ⁶¹ ; Eurostat ³ Metals Ciuta et al - 2015 ⁶² ; Eurostat ³ Packaging Per		Packaging						
PaperEurostat ³ ; den Boer et al - 2010 ⁵⁹ PlasticEurostat ³ Mixed municipal wasteEurostat ³ BatteriesPerchards - 2015 ⁴ WEEEEurostat ³ TextilesEurostat ³ PackagingMAPAMA - 2016 ¹⁹ TextilesEurostat ³ PackagingMAPAMA - 2016 ¹⁹ TextilesMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ MetalsMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ PaperMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ PlasticMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ PlasticMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ PisticMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Mixed municipal wasteEurostat ³ PlasticMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Mixed municipal wasteEurostat ³ PaperPerchards - 2015 ⁶¹ ; Ecotic - 2015 ⁶² TextilesCiuta et al - 2015 ⁶¹ ; Ecotic - 2015 ⁶² TextilesCiuta et al - 2015 ⁶¹ ; Eurostat ³ PackagingPersonal communication from the Environment and Resources AuthorityGlassCiuta et al - 2015 ⁶³ ; Eurostat ³ PaperCiuta et al - 2015 ⁶³ ; Eurostat ³ PaperCiuta et al - 2015 ⁶³ ; Eurostat ³ PaperCiuta et al - 2015 ⁶³ ; Eurostat ³ PaperCiuta et al - 2015 ⁶⁴ WEEEHrvatska AZO - 2016a ¹⁴ TextilesPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PackagingKalogirou and Sakalis - 2016 ⁴² WEEEHrvatska AZO - 2016a ¹⁴ Textile	Poland							
PaperEurostat ³ ; den Boer et al - 2010 ⁵⁹ PlasticEurostat ³ Mixed municipal wasteEurostat ³ BatteriesPerchards - 2015 ⁴ WEEEEurostat ³ TextilesEurostat ³ PackagingMAPAMA - 2016 ¹⁹ TextilesEurostat ³ PackagingMAPAMA - 2016 ¹⁹ TextilesMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ MetalsMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ PaperMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ PlasticMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ PlasticMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ PisticMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Mixed municipal wasteEurostat ³ PlasticMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Mixed municipal wasteEurostat ³ PaperPerchards - 2015 ⁶¹ ; Ecotic - 2015 ⁶² TextilesCiuta et al - 2015 ⁶¹ ; Ecotic - 2015 ⁶² TextilesCiuta et al - 2015 ⁶¹ ; Eurostat ³ PackagingPersonal communication from the Environment and Resources AuthorityGlassCiuta et al - 2015 ⁶³ ; Eurostat ³ PaperCiuta et al - 2015 ⁶³ ; Eurostat ³ PaperCiuta et al - 2015 ⁶³ ; Eurostat ³ PaperCiuta et al - 2015 ⁶³ ; Eurostat ³ PaperCiuta et al - 2015 ⁶⁴ WEEEHrvatska AZO - 2016a ¹⁴ TextilesPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PackagingKalogirou and Sakalis - 2016 ⁴² WEEEHrvatska AZO - 2016a ¹⁴ Textile		Metals						
PlasticEurostat ³ ; den Boer et al - 2010 ⁵⁹ Mixed municipal wasteEurostat ³ BatteriesPerchards - 2015 ⁴ WEEEEurostat ³ ; MAPAMA - 2016 ¹⁹ TextilesEurostat ³ PackagingMAPAMA - 2016 ¹⁹ GlassMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ MetalsMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ PaperMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ PlasticMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Mixed municipal wasteEurostat ³ PlasticMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Mixed municipal wasteEurostat ³ PaperMagalini et al - 2015 ⁶¹ ; Ecotic - 2015 ⁶² TextilesCiuta et al - 2015 ⁶¹ ; Ecotic - 2015 ⁶² TextilesCiuta et al - 2015 ⁶³ ; Eurostat ³ PackagingPersonal communication from the Environment and Resources AuthorityGlassCiuta et al - 2015 ⁶³ ; Eurostat ³ PaperCiuta et al - 2015 ⁶³ ; Eurostat ³ PaperCiuta et al - 2015 ⁶³ ; Eurostat ³ PaperCiuta et al - 2015 ⁶³ ; Eurostat ³ PatricCiuta et al - 2015 ⁶³ ; Eurostat ³ PaperGiuta et al - 2015 ⁶³ ; Eurostat ³ PatricPagagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PatriesPachagingKalogirou and Sakalis - 2016 ⁴² WEEEHrvatska AZO - 2016a ¹⁴ TextilesPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PackagingKalogirou and Sakalis - 2015 ⁴² WEEEPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ Packaging <t< td=""><td></td><td>Paper</td><td></td></t<>		Paper						
Batteries Perchards - 2015 ⁴ WEEE Eurostat ³ ; MAPAMA - 2016 ¹⁹ Textiles Eurostat ³ Packaging MAPAMA - 2016 ¹⁹ Glass Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Metals Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Plastic Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Plastic Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Mixed municipal waste Eurostat ³ Batteries Perchards - 2015 ⁶¹ ; Ecotic - 2015 ⁶² Textiles Ciuta et al - 2015 ⁶¹ ; Ecotic - 2015 ⁶² Textiles Ciuta et al - 2015 ⁶³ ; Eurostat ³ Packaging Personal communication from the Environment and Resources Authority Glass Ciuta et al - 2015 ⁶³ ; Eurostat ³ Metals Ciuta et al - 2015 ⁶³ ; Eurostat ³ Paper Ciuta et al - 2015 ⁶³ ; Eurostat ³ Paper Ciuta et al - 2015 ⁶³ ; Eurostat ³ Metals Ciuta et al - 2015 ⁶³ ; Eurostat ³ Paper Ciuta et al - 2015 ⁶³ ; Eurostat ³ Pastic Ciuta et al - 2015 ⁶³ ; Eurostat ³ <t< td=""><td></td><td>· ·</td><td></td></t<>		· ·						
Batteries Perchards - 2015 ⁴ WEEE Eurostat ³ ; MAPAMA - 2016 ¹⁹ Textiles Eurostat ³ Packaging MAPAMA - 2016 ¹⁹ Glass Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Metals Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Plastic Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Plastic Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Mixed municipal waste Eurostat ³ Batteries Perchards - 2015 ⁶¹ ; Ecotic - 2015 ⁶² Textiles Ciuta et al - 2015 ⁶¹ ; Ecotic - 2015 ⁶² Textiles Ciuta et al - 2015 ⁶³ ; Eurostat ³ Packaging Personal communication from the Environment and Resources Authority Glass Ciuta et al - 2015 ⁶³ ; Eurostat ³ Metals Ciuta et al - 2015 ⁶³ ; Eurostat ³ Paper Ciuta et al - 2015 ⁶³ ; Eurostat ³ Paper Ciuta et al - 2015 ⁶³ ; Eurostat ³ Metals Ciuta et al - 2015 ⁶³ ; Eurostat ³ Paper Ciuta et al - 2015 ⁶³ ; Eurostat ³ Pastic Ciuta et al - 2015 ⁶³ ; Eurostat ³ <t< td=""><td></td><td>Mixed municipal waste</td><td>Eurostat³</td></t<>		Mixed municipal waste	Eurostat ³					
WEEEEurostat³; MAPAMA - 2016 ¹⁹ TextilesEurostat³PackagingMAPAMA - 2016 ¹⁹ GlassMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat³MetalsMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat³PaperMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat³PlasticMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat³PlasticMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat³Mixed municipal wasteEurostat³BatteriesPerchards - 2015 ⁴ WEEEMagalini et al - 2015 ⁶¹ ; Ecotic - 2015 ⁶² TextilesCiuta et al - 2015 ⁶³ ; Eurostat³PackagingPersonal communication from the Environment and Resources AuthorityGlassCiuta et al - 2015 ⁶³ ; Eurostat³PaperCiuta et al - 2015 ⁶³ ; Eurostat³PasticCiuta et al - 2015 ⁶³ ; Eurostat³PiasticCiuta et al - 2015 ⁶⁴ ; Eurostat³MEEEHrvatska AZO - 2016a ¹⁴ TextilesPapagiorgou et al - 2009 ⁴¹ ; Eurostat³PackagingKalogirou and Sakalis - 2016 ⁴² GlassPapagiorgou et al - 2009 ⁴¹ ; Eurostat³PackagingKalogirou and Sakalis - 2016 ⁴² PackagingKalogirou and Sakalis - 2016 ⁴¹ PattisPapagiorgou et al - 2009 ⁴¹ ; Eurostat³PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat³PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat³P								
PortugalTextilesEurostat3PackagingMAPAMA - 201619GlassMagrinho and Semiao - 200860; Eurostat3MetalsMagrinho and Semiao - 200860; Eurostat3PaperMagrinho and Semiao - 200860; Eurostat3PlasticMagrinho and Semiao - 200860; Eurostat3PlasticMagrinho and Semiao - 200860; Eurostat3PlasticMagrinho and Semiao - 200860; Eurostat3PiasticMagrinho and Semiao - 200860; Eurostat3PiasticMagrinho and Semiao - 200860; Eurostat3PiasticMagrinho and Semiao - 200860; Eurostat3PatteriesPerchards - 20154WEEEMagalini et al - 201561; Ecotic - 201562TextilesCiuta et al - 201563; Eurostat3PackagingPersonal communication from the Environment and ResourcesAuthorityGlassCiuta et al - 201563; Eurostat3MetalsCiuta et al - 201563; Eurostat3PaperCiuta et al - 201563; Eurostat3PaperPerchards - 201564WEEEHrvatska AZO - 2016a14TextilesPapagiorgou et al - 200941; Eurostat3PackagingKalogirou and Sakalis - 201642SlovakiaGlassPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3 <tr< td=""><td></td><td>-</td><td></td></tr<>		-						
PackagingMAPAMA - 201619GlassMagrinho and Semiao - 200860; Eurostat3MetalsMagrinho and Semiao - 200860; Eurostat3PaperMagrinho and Semiao - 200860; Eurostat3PlasticMagrinho and Semiao - 200860; Eurostat3PlasticMagrinho and Semiao - 200860; Eurostat3Mixed municipal wasteEurostat3BatteriesPerchards - 20154WEEEMagalini et al - 201561; Ecotic - 201562TextilesCiuta et al - 201563; Eurostat3PackagingPersonal communication from the Environment and Resources AuthorityGlassCiuta et al - 201563; Eurostat3PaperCiuta et al - 201563; Eurostat3PasticCiuta et al - 201563; Eurostat3PasticCiuta et al - 201563; Eurostat3PasticPerchards - 20154WEEEHrvatska AZO - 2016a14TextilesPapagiorgou et al - 200941; Eurostat3PackagingKalogirou and Sakalis - 201642SlovakiaGlassPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3PasticPapagiorgou et al - 200941; Eurostat3PasticPapagiorgou et al - 200941; Eurostat3PasticPapagiorgou et al - 200941; Eurostat3PasticPapagi								
Portugal Glass Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Metals Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Paper Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Plastic Magrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Mixed municipal waste Eurostat ³ Batteries Perchards - 2015 ⁶¹ WEEE Magalini et al - 2015 ⁶¹ ; Ecotic - 2015 ⁶² Textiles Ciuta et al - 2015 ⁶³ ; Eurostat ³ Packaging Personal communication from the Environment and Resources Authority Glass Ciuta et al - 2015 ⁶³ ; Eurostat ³ Paper Ciuta et al - 2015 ⁶³ ; Eurostat ³ Paper Ciuta et al - 2015 ⁶³ ; Eurostat ³ Paper Ciuta et al - 2015 ⁶³ ; Eurostat ³ Paper Ciuta et al - 2015 ⁶³ ; Eurostat ³ Paper Ciuta et al - 2015 ⁶³ ; Eurostat ³ Paper Ciuta et al - 2015 ⁶³ ; Eurostat ³ Paper Ciuta et al - 2015 ⁶³ ; Eurostat ³ Paper Perchards - 2015 ⁴ WEE Hrvatska AZO - 2016 ¹⁴ Textiles Papagiorgou et al - 2009 ⁴¹ ; Eurostat ³ Packaging Kalogirou and Sakalis - 2016		Packaging	MAPAMA - 2016 ¹⁹					
MetalsMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ PaperMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ PlasticMagrinho and Semiao - 2008 ⁶⁰ ; Eurostat ³ Mixed municipal wasteEurostat ³ BatteriesPerchards - 2015 ⁴ WEEEMagalini et al - 2015 ⁶¹ ; Ecotic - 2015 ⁶² TextilesCiuta et al - 2015 ⁶³ ; Eurostat ³ PackagingPersonal communication from the Environment and Resources AuthorityGlassCiuta et al - 2015 ⁶³ ; Eurostat ³ PaperCiuta et al - 2015 ⁶³ ; Eurostat ³ PaperCiuta et al - 2015 ⁶³ ; Eurostat ³ PatricCiuta et al - 2015 ⁶³ ; Eurostat ³ PatricCiuta et al - 2015 ⁶³ ; Eurostat ³ PatricCiuta et al - 2015 ⁶³ ; Eurostat ³ PaperCiuta et al - 2015 ⁶³ ; Eurostat ³ PatricCiuta et al - 2015 ⁶³ ; Eurostat ³ PatricCiuta et al - 2015 ⁶³ ; Eurostat ³ PatricPerchards - 2015 ⁴ Mixed municipal wasteEurostat ³ BatteriesPerchards - 2016 ⁴¹ TextilesPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PackagingKalogirou and Sakalis - 2016 ⁴² SlovakiaGlassPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ </td <td>Portugal</td> <td></td> <td></td>	Portugal							
PaperMagrinho and Semiao - 200860; Eurostat3PlasticMagrinho and Semiao - 200860; Eurostat3Mixed municipal wasteEurostat3BatteriesPerchards - 20154WEEEMagalini et al - 201561; Ecotic - 201562TextilesCiuta et al - 201563; Eurostat3PackagingPersonal communication from the Environment and Resources AuthorityGlassCiuta et al - 201563; Eurostat3MetalsCiuta et al - 201563; Eurostat3PaperCiuta et al - 201563; Eurostat3PaperCiuta et al - 201563; Eurostat3PlasticCiuta et al - 201563; Eurostat3PlasticCiuta et al - 201563; Eurostat3Mixed municipal wasteEurostat3BatteriesPerchards - 201563; Eurostat3Mixed municipal wasteEurostat3SlovakiaGlassSlovakiaGlassPackagingKalogirou and Sakalis - 201641TextilesPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3<	5							
Mixed municipal wasteEurostat³BatteriesPerchards - 2015 ⁴ WEEEMagalini et al - 2015 ⁶³ ; Ecotic - 2015 ⁶² TextilesCiuta et al - 2015 ⁶³ ; Eurostat³PackagingPersonal communication from the Environment and Resources AuthorityGlassCiuta et al - 2015 ⁶³ ; Eurostat³MetalsCiuta et al - 2015 ⁶³ ; Eurostat³PaperCiuta et al - 2015 ⁶³ ; Eurostat³PlasticCiuta et al - 2015 ⁶³ ; Eurostat³Mixed municipal wasteEurostat³BatteriesPerchards - 2015 ⁴ WEEEHrvatska AZO - 2016a ¹⁴ TextilesPapagiorgou et al - 2009 ⁴¹ ; Eurostat³PackagingKalogirou and Sakalis - 2016 ⁴² SlovakiaGlassPapagiorgou et al - 2009 ⁴¹ ; Eurostat³PatiscPapagiorgou et al - 2009 ⁴¹ ; Eurostat³PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat³		Paper						
Mixed municipal wasteEurostat³BatteriesPerchards - 2015 ⁴ WEEEMagalini et al - 2015 ⁶³ ; Ecotic - 2015 ⁶² TextilesCiuta et al - 2015 ⁶³ ; Eurostat³PackagingPersonal communication from the Environment and Resources AuthorityGlassCiuta et al - 2015 ⁶³ ; Eurostat³MetalsCiuta et al - 2015 ⁶³ ; Eurostat³PaperCiuta et al - 2015 ⁶³ ; Eurostat³PlasticCiuta et al - 2015 ⁶³ ; Eurostat³Mixed municipal wasteEurostat³BatteriesPerchards - 2015 ⁴ WEEEHrvatska AZO - 2016a ¹⁴ TextilesPapagiorgou et al - 2009 ⁴¹ ; Eurostat³PackagingKalogirou and Sakalis - 2016 ⁴² SlovakiaGlassPapagiorgou et al - 2009 ⁴¹ ; Eurostat³PatiscPapagiorgou et al - 2009 ⁴¹ ; Eurostat³PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat³								
BatteriesPerchards - 20154WEEEMagalini et al - 201561; Ecotic - 201562TextilesCiuta et al - 201563; Eurostat3PackagingPersonal communication from the Environment and Resources AuthorityGlassCiuta et al - 201563; Eurostat3MetalsCiuta et al - 201563; Eurostat3PaperCiuta et al - 201563; Eurostat3PlasticCiuta et al - 201563; Eurostat3Mixed municipal wasteEurostat3BatteriesPerchards - 20154WEEEHrvatska AZO - 2016a14TextilesPapagiorgou et al - 200941; Eurostat3PackagingKalogirou and Sakalis - 201642GlassPapagiorgou et al - 200941; Eurostat3PackagingKalogirou and Sakalis - 201642PaperPapagiorgou et al - 200941; Eurostat3PackagingKalogirou and Sakalis - 201642SlovakiaPaperPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3PlasticPapagiorgou et al - 200941; Eurostat3		Mixed municipal waste						
WEEEMagalini et al - 2015 ⁶¹ ; Ecotic - 2015 ⁶² TextilesCiuta et al - 2015 ⁶³ ; Eurostat ³ PackagingPersonal communication from the Environment and Resources AuthorityGlassCiuta et al - 2015 ⁶³ ; Eurostat ³ MetalsCiuta et al - 2015 ⁶³ ; Eurostat ³ PaperCiuta et al - 2015 ⁶³ ; Eurostat ³ PlasticCiuta et al - 2015 ⁶³ ; Eurostat ³ PlasticCiuta et al - 2015 ⁶³ ; Eurostat ³ Mixed municipal wasteEurostat ³ BatteriesPerchards - 2015 ⁴ WEEEHrvatska AZO - 2016a ¹⁴ TextilesPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PackagingKalogirou and Sakalis - 2016 ⁴² GlassPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PackagingKalogirou and Sakalis - 2016 ⁴² PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³		· · · · · · · · · · · · · · · · · · ·	Perchards - 2015 ⁴					
TextilesCiuta et al - 201563; Eurostat3PackagingPersonal communication from the Environment and Resources AuthorityGlassCiuta et al - 201563; Eurostat3MetalsCiuta et al - 201563; Eurostat3PaperCiuta et al - 201563; Eurostat3PlasticCiuta et al - 201563; Eurostat3Mixed municipal wasteEurostat3BatteriesPerchards - 20154WEEEHrvatska AZO - 2016a14TextilesPapagiorgou et al - 200941; Eurostat3PackagingKalogirou and Sakalis - 201642GlassPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3 <td></td> <td>WEEE</td> <td>Magalini et al - 2015⁶¹; Ecotic - 2015⁶²</td>		WEEE	Magalini et al - 2015 ⁶¹ ; Ecotic - 2015 ⁶²					
PackagingAuthorityGlassCiuta et al - 2015 ⁶³ ; Eurostat ³ MetalsCiuta et al - 2015 ⁶³ ; Eurostat ³ PaperCiuta et al - 2015 ⁶³ ; Eurostat ³ PlasticCiuta et al - 2015 ⁶³ ; Eurostat ³ Mixed municipal wasteEurostat ³ BatteriesPerchards - 2015 ⁴ WEEEHrvatska AZO - 2016a ¹⁴ TextilesPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PackagingKalogirou and Sakalis - 2016 ⁴² GlassPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PatalsPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³ PaperPapagiorgou et al - 2009 ⁴¹ ; Eurostat ³		Textiles						
RomaniaGlassCiuta et al - 201563; Eurostat3MetalsCiuta et al - 201563; Eurostat3PaperCiuta et al - 201563; Eurostat3PlasticCiuta et al - 201563; Eurostat3Mixed municipal wasteEurostat3BatteriesPerchards - 20154WEEEHrvatska AZO - 2016a14TextilesPapagiorgou et al - 200941; Eurostat3PackagingKalogirou and Sakalis - 201642SlovakiaGlassPaperPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3PlasticPapagiorgou et al - 200941; Eurostat3		Packaging						
MetalsCiuta et al - 201563; Eurostat3PaperCiuta et al - 201563; Eurostat3PlasticCiuta et al - 201563; Eurostat3Mixed municipal wasteEurostat3BatteriesPerchards - 20154WEEHrvatska AZO - 2016a14TextilesPapagiorgou et al - 200941; Eurostat3PackagingKalogirou and Sakalis - 201642GlassPapagiorgou et al - 200941; Eurostat3MetalsPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3PlasticPapagiorgou et al - 200941; Eurostat3	Romania	Glass	Ciuta et al - 2015 ⁶³ ; Eurostat ³					
PlasticCiuta et al - 201563; Eurostat3Mixed municipal wasteEurostat3BatteriesPerchards - 20154WEEEHrvatska AZO - 2016a14TextilesPapagiorgou et al - 200941; Eurostat3PackagingKalogirou and Sakalis - 201642GlassPapagiorgou et al - 200941; Eurostat3MetalsPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3PlasticPapagiorgou et al - 200941; Eurostat3		Metals						
Mixed municipal wasteEurostat3BatteriesPerchards - 20154WEEEHrvatska AZO - 2016a14TextilesPapagiorgou et al - 200941; Eurostat3PackagingKalogirou and Sakalis - 201642GlassPapagiorgou et al - 200941; Eurostat3MetalsPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3PlasticPapagiorgou et al - 200941; Eurostat3		Paper	Ciuta et al - 2015 ⁶³ ; Eurostat ³					
BatteriesPerchards - 20154WEEEHrvatska AZO - 2016a14TextilesPapagiorgou et al - 200941; Eurostat3PackagingKalogirou and Sakalis - 201642GlassPapagiorgou et al - 200941; Eurostat3MetalsPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3PlasticPapagiorgou et al - 200941; Eurostat3		Plastic	Ciuta et al - 2015 ⁶³ ; Eurostat ³					
WEEEHrvatska AZO - 2016a14TextilesPapagiorgou et al - 200941; Eurostat3PackagingKalogirou and Sakalis - 201642GlassPapagiorgou et al - 200941; Eurostat3MetalsPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3PlasticPapagiorgou et al - 200941; Eurostat3		Mixed municipal waste	Eurostat ³					
WEEEHrvatska AZO - 2016a14TextilesPapagiorgou et al - 200941; Eurostat3PackagingKalogirou and Sakalis - 201642GlassPapagiorgou et al - 200941; Eurostat3MetalsPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3PlasticPapagiorgou et al - 200941; Eurostat3		· · ·	Perchards - 2015 ⁴					
TextilesPapagiorgou et al - 200941; Eurostat3PackagingKalogirou and Sakalis - 201642SlovakiaGlassPapagiorgou et al - 200941; Eurostat3MetalsPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3PlasticPapagiorgou et al - 200941; Eurostat3								
Packaging Kalogirou and Sakalis - 2016 ⁴² Slovakia Glass Papagiorgou et al - 2009 ⁴¹ ; Eurostat ³ Metals Papagiorgou et al - 2009 ⁴¹ ; Eurostat ³ Paper Papagiorgou et al - 2009 ⁴¹ ; Eurostat ³ Plastic Papagiorgou et al - 2009 ⁴¹ ; Eurostat ³		-						
Slovakia Glass Papagiorgou et al - 2009 ⁴¹ ; Eurostat ³ Metals Papagiorgou et al - 2009 ⁴¹ ; Eurostat ³ Paper Papagiorgou et al - 2009 ⁴¹ ; Eurostat ³ Plastic Papagiorgou et al - 2009 ⁴¹ ; Eurostat ³								
MetalsPapagiorgou et al - 200941; Eurostat3PaperPapagiorgou et al - 200941; Eurostat3PlasticPapagiorgou et al - 200941; Eurostat3	Slovakia							
PaperPapagiorgou et al - 200941; Eurostat3PlasticPapagiorgou et al - 200941; Eurostat3								
Plastic Papagiorgou et al - 2009 ⁴¹ ; Eurostat ³								
		Mixed municipal waste						

Clauseit	Batteries WEEE	Perchards - 2015 ⁴
Clauseria	WFFF	
Clavania		Di Maria et al - 2015 ⁴⁷ ; Zitnik and Vidic - 2015 ⁶⁴ ; Eurostat ³
Claurania	Textiles	Di Maria et al - 2015 ⁴⁷ ; Eurostat ³
Claurania	Packaging	ISPRA - 2015 ⁴⁶
Slovenia	Glass	Di Maria et al - 2015 ⁴⁷ ; Eurostat ³
	Metals	Di Maria et al - 2015 ⁴⁷ ; Eurostat ³
	Paper	Di Maria et al - 2015 ⁴⁷ ; Eurostat ³
	Plastic	Di Maria et al - 2015 ⁴⁷ ; Eurostat ³
	Mixed municipal waste	Eurostat ³
	Batteries	Perchards - 2015 ⁴
	WEEE	MAPAMA - 2016 ¹⁹ ; Eurostat ³
	Textiles	MAPAMA - 2016 ¹⁹ ; Eurostat ³
	Packaging	MAPAMA - 2016 ¹⁹
Spain	Glass	MAPAMA - 2016 ¹⁹ ; Eurostat ³
o pa	Metals	MAPAMA - 2016 ¹⁹ ; Eurostat ³
	Paper	MAPAMA - 2016 ¹⁹ ; Eurostat ³
	Plastic	MAPAMA - 2016 ¹⁹ ; Eurostat ³
	Mixed municipal waste	Eurostat ³
	Batteries	Perchards - 2015 ⁴
	WEEE	Steiger – 2014 ⁵ ; BAFU - 2015 ⁶
	Textiles	Tojo et al - 2012 ²³
	Packaging	BAFU - 2015 ⁶
Sweden	Glass	BAFU - 2015 ⁶ ; Eurostat ³
Sweden	Metals	BAFU - 2015 ⁶ ; Eurostat ³
	Paper	BAFU - 2015 ⁶ ; Eurostat ³
	Plastic	BAFU - 2015 ⁶ ; Eurostat ³
	Mixed municipal waste	Eurostat ³
	Batteries	Perchards - 2015 ⁴
	WEEE	Steiger – 2014 ⁵ ; BAFU - 2015 ⁶
	Textiles	Steiger – 2014 ⁵ ; BAFU - 2015 ⁶
	Packaging	BAFU - 2015 ⁶
Switzerland	Glass	BAFU - 2015 ⁶
011120110110	Metals	BAFU - 2015 ⁶
	Paper	BAFU - 2015 ⁶
	Plastic	BAFU - 2015 ⁶
	Mixed municipal waste	OFEV - 2016 ⁶⁵
	Batteries	Perchards - 2015 ⁴
		Personal communication from the EPA; Eurostat ³ ; Personal
	WEEE	communication from D. Turner, Empa
		Thompson and Hitchen - 2015 ⁶⁶ ; Eurostat ³ ; Personal
	Textiles	communication from D. Turner, Empa
United	Packaging	DEFRA - 2015 ⁶⁷
Kingdom	Glass	Eurostat ³ ; Personal communication from D. Turner, Empa
	Metals	Eurostat ³ ; Personal communication from D. Turner, Empa
	Paper	Eurostat ³ ; Personal communication from D. Turner, Empa
	Plastic	Eurostat ³ ; Personal communication from D. Turner, Empa
	Mixed municipal waste	Eurostat ³

List of references:

- (1) Elektroaltgeräte Kordinierungsstelle Austria GmbH. *Tätigkeitsbericht 2015*; Wien, 2016; p 93.
- (2) Bundesministerium für Land- und Fortwirtschaft, Umwelt und Wasserwirtschaft. *Die Bestandsaufnahme der Abfallwirtschaft in Österreich Statusbericht 2015*; Wien, 2015; p 92.
- (3) European Commission. Waste Generation and Treatment http://ec.europa.eu/eurostat/web/environment/waste/database (accessed Feb 15, 2017).
- (4) Perchards; SagisEPR.com. *The collection of waste portable batteries in Europe in view of the achievability of the collection targets set by Batteries Directive 2006/66/EC*; European Portable Battery Association (EPBA), 2015; p 35.
- (5) Steiger, U. *Erhebung der Kehrichtzusammensetzung 2012*; Bundesamt für Umwelt (BAFU), 2014; p 63.
- (6) Bundesamt für Umwelt BAFU. *Abfallmengen und Recycling 2014 im Überblick*; Bern, Switzerland, 2015; p 1.
- (7) Coberec. *Récupération des textiles Rapport 2015*; 2016; p 1.
- (8) FostPlus. *Annual Report 2015*; Brussels, Belgium, 2016; p 24.
- (9) de Beer, H. *Gestion des déchets ménagers à Bruxelles et en Wallonie: Etat des lieux et enjeux;* Etopia, 2012; p 17.
- (10) Wille, D.; Vervaet, M.; Andries, A.; Segers, N.; Van Hasselt, D.; Smeets, K. *Inventarisatie huishoudelijke afvalstoffen 2014*; OVAM: Mechelen, The Netherlands, 2015; p 67.
- (11) Baldé, C. P.; Wang, F.; Kuehr, R.; Huisman, J. *The global e-waste monitor 2014*; United Nations University, IAS SCYCLE: Bonn, Germany, 2015; p 80.
- (12) Egis International. *Sofia Waste Phase II MBT Option Analysis First Interim Report*; 2011; p 123.
- (13) Ministry of Environment and Water. *National Waste Management Plan 2014-2020*; Sofia, Bulgaria, 2014; p 197.
- (14) Hrvatska agencija za okolis i prirodu. *Pregled podataka za posebne kategorije otpada za razdoblje do 2014. Godine: Ambalazni otpad, Otpadna motorna i jestiva ulja, Elektricni i elektronicki otpad, Otpadne baterije i akumulatori;* Zagreb, Croatia, 2016; p 25.
- (15) Stanic-Maruna, I.; Fellner, J. Solid waste management in Croatia in response to the European Landfill Directive. *Waste Manag. Res.* **2012**, *0*, 1–14.
- (16) Hrvatska agencija za okolis i prirodu. *Izvjescé o komunalnom otpadu za 2014. godinu*; NN br. 94/13; Zagreb, Croatia, 2016; p 309.
- (17) Green Dot. Annual Report 2015; 2016; p 94.
- (18) Zorpas, A. A.; Lasaridi, K.; Voukkali, I.; Loizia, P.; Chroni, C. Household waste compositional analysis variation from insular communities in the framework of waste prevention strategy plans. *Waste Manag.* **2015**, *38*, 3–11.
- (19) Ministerio de agricultura y pesca alimentación y medio ambiente. *Anuario de Estadística 2015*; Madrid, Spain, 2016; p 1047.
- (20) Agriculture, Forestry and Environmental Statistics Department. *Generation, recovery and dispoal of waste;* Prague, Czech Republic, 2015; p 42.
- (21) Ministry of the Environment. *Waste Management Plan of the Czech Republic for the period* 2015-2024; Prague, Czech Republic, 2014; p 189.
- (22) Toft, R.; Fischer, C.; Aasted Bojesen, N. *Waste Statistics 2014*; Ministry of Environment and Food of Denmark, 2016; p 58.
- (23) Tojo, N.; Kogg, B.; Kiorboe, N.; Kjaer, B.; Aalto, K. *Prevention of Textile Waste Material flows* of textiles in three Nordic countries and suggestions on policy instruments; TemaNord 2012:545; Nordic Council of Ministers, 2012; p 124.
- (24) Petersen, C.; Kaysen, O.; Manokaran, S.; Tonning, K. *Kortlaegning af dagrenovation i Danmark* - *Med fokus pa etageboliger og madspild*; Miljostyrelsen, 2014; p 74.
- (25) Keskkonnaagentuur. Waste from Estonia https://jats.keskkonnainfo.ee/main.php?public=1 (accessed Feb 14, 2017).

- (26) Mattson, T. Municipal waste removal is successfully organised, sorting needs improvement http://www.riigikontroll.ee/tabid/168/amid/557/ItemId/942/language/en-US/Default.aspx (accessed Feb 14, 2017).
- (27) RECO Baltic 21 Tech. *National Waste Management Review Estonia, Latvia, Lithuania, Poland*; 2012; p 96.
- (28) Estonian Institute for Sustainable Development; Stockholm Environment Institute Tallinn Centre (SEI Tallinn). *Improving the recycling system of municipal waste in Tallinn based on the examples of best practices*; 2014; p 67.
- (29) Liikanen, M.; Sahimaa, O.; Hupponen, M.; Havukainen, J.; Sorvari, J.; Horttanainen, M. Updating and testing of a Finnish method for mixed municipal solid waste composition studies. *Waste Manag.* **2016**, *52*, 25–33.
- (30) Statistics Finland. *Waste Statistics 2014 Municipal waste*; 2015; p 5.
- (31) Seyring, N.; Kling, M.; Weissenbacher, J.; Hestin, M.; Lecerf, L.; Magalini, F.; Sinha Khetriwal, D.; Kuehr, R. Study on WEEE recovery targets, preparation for re-use targets and on the method for calculation of the recovery targets Final Report; European Commission (EC), 2015; p 136.
- (32) ymparisto.fi. Pakkausjätetilastoja vuosilta 2003-2014, materiaalit yhteensä. 2016.
- (33) ADEME. La composition des ordures ménagères et assimilées en France; ADEME, 2010; p 31.
- (34) ADEME. Equipements électriques et électroniques Données 2014; Angers, France, 2015; p 16.
- (35) ADEME. *Textiles d'habillement, linge de maison et chaussures des ménages Données 2014;* Angers, France, 2015; p 13.
- (36) Eco-Emballages; Adelphe. *Rapport d'activité 2014*; 2015; p 112.
- (37) Stiftung Elektro-altgeräte register. Jahres-Statistik-Mitteilung https://www.stiftungear.de/en/service/kennzahlen/jahres-statistik-mitteilung/ (accessed Feb 14, 2017).
- (38) Fachverband Textilrecycling. *Konsum, Bedarf und Wiederverwendung von Bekleidung und Textilien in Deutschland*; Bundesverband Sekundärrohstoffe und Entsorgung e.V., 2015; p 68.
- (39) Schüler, K. Aufkommen und Verwertung von Verpackungsabfällen in Deutschland im Jahr 2013; UBA-FB 002234; Umweltbundesamtes: Dessau-Rosslau, 2015; p 177.
- (40) Plastic ZERO Public Private Cooperations for Avoiding Plastic as a Waste. *Review of plastic waste in municipal waste stream Germany*; 2014; p 13.
- (41) Papageorgiou, A.; Karagiannidis, A.; Barton, J. R.; Kalogirou, E. Municipal solid waste management scenarios for Attica and their greenhouse gas emission impact. *Waste Manag. Res.* **2009**, *27*, 928–937.
- (42) Kalogirou, E.; Sakalis, A. Overview of the Waste Management Situation and Planning in Greece. *Waste Manag.* **2016**, *6*, 107–116.
- (43) McCoole, F.; Kurz, I.; McDonagh, M.; O'Neill, D.; Derham, J. *National Waste Report for 2011*; Environmental Protection Agency of Ireland, 2013; p 103.
- (44) WEEE Ireland. Annual Environmental Report 2014; Dublin, Ireland, 2015; p 88.
- (45) Environmental Protection Agency. Bulletin 3: Residual waste treatment trends 2009 to 2013.2014.
- (46) Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA). *Rapporto Rifiuti Urbani Edizione 2015*; 2015; p 585.
- (47) Di Maria, F.; Micale, C.; Morettini, E.; Sisani, L.; Damiano, R. Improvement of the management of residual waste in areas without thermal treatment facilities: A life cycle analysis of an Italian management district. *Waste Manag.* **2015**, *44*, 206–215.
- (48) Teibe, I.; Bendere, R.; Arina, D. Latvian waste management modelling in view of environmental impact reduction. *Latv. J. Phys. Tech. Sci.* **2013**, No. 6, 36–47.
- (49) Ministère du Développement durable et des Infrastructures. *Berichtswesen 2013 zur Bewirtschaftung von Elektround Elektronik-Altgeräten im Großherzogtum Luxemburg*; 2015; p 14.

- (50) Ministère du Développement durable et des Infrastructures. Restabfallanalyse 2013/14 Ausgewählte Ergebnisse. 2014.
- (51) Administration de l'Environnement. Déchets recyclables récupérés (en tonnes) 1984-2014 http://www.statistiques.public.lu/stat/TableViewer/tableView.aspx?ReportId=13940&IF_La nguage=fra&MainTheme=1&FldrName=3&RFPath=65 (accessed Feb 14, 2017).
- (52) Huisman, J.; van der Maesen, M.; Eijsbouts, R. J. J.; Wang, F.; Baldé, C. P.; Wielenga, C. A. *The Dutch WEEE Flows*; United Nations University, ISP SCYCLE: Bonn, Germany, 2012; p 46.
- (53) Rijkswaterstaat. Samenstelling van het huishoudelijk restafval, sorteeranalyses 2015 -Gemiddelde driejaarlijkse samenstelling 2014; Utrecht, The Netherlands, 2016; p 46.
- (54) van de Wiel, H. *Giving old clothes a second life*; Dutch Waste Management Association, 2013; p 3.
- (55) Afvalfonds Verpakkingen. *Monitoring Verpakkingen Resultaten inzameling en recycling 2015*; 2016; p 60.
- (56) The Norwegian Environment Agency. Waste electrical and electronic equipment http://www.environment.no/topics/waste/waste-electrical-and-electronic-equipment/ (accessed Feb 14, 2017).
- (57) Ellyin, C. *Small scale waste-to-energy technologies*; Ph.D. Dissertation; Columbia University, 2012; p 65.
- (58) Górska, A.; Karczewska, K.; Kielczykowska, A.; Kowaluk, R.; Lizuraj, M.; Pawlowska, T.; Rudnicka, M.; Ruman, J.; Stefaniak, K.; Sulik, J.; et al. *Environment 2015*; CSO, Regional and Environmental Surveys Department: Varsaw, Poland, 2015; p 565.
- (59) den Boer, E.; Jedrczak, A.; Kowalski, Z.; Kulcazycka, J.; Szpadt, R. A review of municipal solid waste composition and quantities in Poland. *Waste Manag.* **2010**, *30*, 369–377.
- (60) Magrinho, A.; Semiao, V. Estimation of residual MSW heating value as a function of waste component recycling. *Waste Manag.* **2008**, *28*, 2675–2683.
- (61) Magalini, F.; Baldé, K.; Habib, H. *Quantifying Waste of Electric and Electronic Equipment in Romania*; United Nations University, 2015; p 42.
- (62) Ecotic. Year in Review 2014; 2015; p 32.
- (63) Ciuta, S.; Apostol, T.; Rusu, V. Urban and Rural MSW Stream Characterization for Separate Collection Improvement. *Sustainability* **2015**, *7*, 916–931.
- (64) Zitnik, M.; Vidic, T. *In 2013, 69% of packaging waste was recycled*; Statistical Office of the Republic of Slovenia: Ljubljana, Slovenia, 2015; p 3.
- (65) Office fédéral de l'environnement (OFEV). Statistique des déchets spéciaux 2012 Déchets suisses traités sur le territoire national. February 26, 2016.
- (66) Thompson, L.; Hitchen, D. *Recycling Grade Textiles Collection Demonstration Projects*; WRAP, 2015; p 23.
- (67) Department for Environment, Food and Rural Affairs (DEFRA). *Digest of Waste and Resource Statistics 2015 Edition*; 2015; p 84.

	Land	filling	Total inc	ineration	Material	recycling
	Tonnes	%	Tonnes	%	Tonnes	%
Belgium	46	1%	2,189	56%	1,672	43%
Bulgaria	2,167	72%	49	2%	787	26%
Czech Republic	1,815	58%	631	20%	686	22%
Denmark	71	2%	2,315	65%	1,154	33%
Germany	684	2%	17,255	42%	23,091	56%
Estonia	53	17%	214	68%	49	16%
Ireland	1,028	45%	427	19%	829	36%
Greece	4,507	84%	0	0%	869	16%
Spain	11,801	67%	2,492	14%	3,284	19%
France	8,777	31%	12,099	43%	7,320	26%
Croatia	1,413	86%	1	0%	228	14%
Italy	10,914	45%	5,970	25%	7,335	30%
Cyprus	423	86%	0	0%	70	14%
Latvia	521	89%	0	0%	66	11%
Lithuania	798	69%	92	8%	261	23%
Luxembourg	61	22%	119	43%	95	35%
Hungary	2,415	68%	336	9%	799	23%
Malta	196	91%	1	0%	19	9%
Netherlands	131	2%	4,305	66%	2,111	32%
Austria	199	6%	1,716	55%	1,202	39%
Poland	5,979	73%	766	9%	1,499	18%
Portugal	2,320	58%	1,091	27%	594	15%
Romania	3,503	92%	97	3%	214	6%
Slovenia	224	48%	4	1%	239	51%
Slovakia	1,152	80%	174	12%	108	8%
Finland	672	29%	1,137	49%	510	22%
Sweden	28	1%	2,192	60%	1,443	39%
United Kingdom	10,516	41%	6,510	26%	8,468	33%
Norway	52	2%	1,446	69%	590	28%
Switzerland	0	0%	2,798	59%	1,919	41%

Appendix 5: Municipal waste management in Europe in 2013 (adapted from Eurostat)

		Flows	s of CB in Au	stria		Flows of CB in Belgium				
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnec				In to	nnec		
То		111 10	111105					iiiies		
Waste water	1,481.57	1,787.93	2,024.22	2,579.30	2.7%	1,075.55	1,290.68	1,334.88	1,596.37	2.0%
Air	601.17	750.13	811.20	1,025.44	1.1%	470.66	539.17	563.84	657.57	0.8%
Surface water	2,923.36	3,776.52	4,233.14	5,577.64	5.7%	1,818.55	2,382.36	2,472.77	3,135.63	3.7%
Soil	1,454.96	1,842.15	2,132.24	2,824.58	2.9%	906.24	1,126.14	1,243.04	1,582.36	1.8%
Landfill -										
CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	316.30	402.92	429.31	544.65	0.6%	201.90	238.36	251.90	303.25	0.4%
Incineration	12,573.34	15,275.30	17,335.67	22,218.58	23.3%	7,958.81	9,466.94	10,156.46	12,394.42	15.1%
Recycling	37,265.17	48,332.07	47,572.17	57,896.78	63.8%	25,063.72	27,796.68	27,838.37	30,602.38	41.3%
Export	0.00	0.00	0.00	0.00	0.0%	20,800.04	23,073.85	23,611.95	26,480.09	35.0%
			of CB in Bul	•				of CB in Cr		
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnes				In to	nnes		
То		111 10	lines				111 10	inico		
Waste water	490.57	716.92	900.89	1,313.99	2.5%	168.78	197.97	203.18	237.56	0.4%
Air	194.74	231.57	358.70	522.34	1.0%	122.26	149.83	153.70	184.95	0.3%
Surface water	1,081.55	1,643.70	2,049.40	3,037.48	5.7%	58.25	74.53	84.02	110.08	0.2%
Soil	542.36	669.32	1,031.12	1,531.57	2.9%	29.17	36.69	42.27	55.64	0.1%
Landfill -										
CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	5,151.54	7,261.51	9,483.48	13,789.20	26.4%	286.58	345.62	387.16	489.78	0.8%
Incineration	0.56	0.74	1.11	1.67	0.0%	0.00	0.00	0.00	0.00	0.0%
Recycling	12,431.77	18,912.86	22,156.27	31,778.79	61.6%	736.25	877.25	912.69	1,091.66	1.8%
Export	0.00	0.00	0.00	0.00	0.0%	47,664.65	49,556.70	49,475.03	51,278.58	96.5%

Appendix 6: Modelling results – masses of carbon black ENM entering technical and environmental compartments

		Flow	s of CB in Cy	prus		Flows of CB in Czech Republic				
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	nnes		
Waste water	268.65	389.05	665.08	1,055.84	2.5%	933.57	1,101.24	1,210.65	1,492.15	0.5%
Air	109.89	108.07	270.76	427.80	1.0%	530.86	639.19	668.04	806.94	0.3%
Surface water	581.24	477.04	1,514.92	2,438.28	5.7%	1,474.31	1,988.16	2,140.85	2,817.69	1.0%
Soil	292.12	416.01	761.88	1,229.21	2.9%	737.12	923.25	1,076.74	1,422.05	0.5%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	2,275.24	1,901.08	5,810.31	9,288.84	21.8%	6,121.69	7,405.04	7,502.18	8,873.49	3.4%
Incineration	0.00	0.00	0.00	0.00	0.0%	1,535.28	1,903.51	1,882.57	2,228.14	0.9%
Recycling	7,174.32	6,213.58	17,605.16	27,861.23	66.1%	20,563.98	25,048.33	25,153.00	29,669.04	11.4%
Export	0.00	0.00	0.00	0.00	0.0%	169,894.13	179,657.55	180,697.98	191,480.96	82.0%
										X
		Flows	of CB in Den	ımark			Flows	s of CB in Este	onia	
	Q15	Flows Mode	of CB in Den Mean	Q85	Mean TC	Q15	Flows Mode	of CB in Esto Mean	onia Q85	Mean TC
То	Q15		Mean		Mean TC	Q15		Mean		
To Waste water	Q15 918.66	Mode	Mean		Mean TC 2.6%	Q15 272.79	Mode	Mean		
		Mode In to	Mean nnes	Q85			Mode In to	Mean nnes	Q85	тс
Waste water	918.66	Mode In to 1,149.33	Mean nnes 1,372.27	Q85 1,836.58	2.6%	272.79	Mode In to 278.88	Mean nnes 671.30	Q85 1,062.38	TC 2.5%
Waste water Air	918.66 368.03	Mode In to 1,149.33 462.94	Mean nnes 1,372.27 545.34	Q85 1,836.58 725.81	2.6% 1.0%	272.79 109.61	Mode In to 278.88 113.69	Mean nnes 671.30 271.23	Q85 1,062.38 429.29	TC 2.5% 1.0%
Waste water Air Surface water	918.66 368.03 1,932.63	Mode In to 1,149.33 462.94 2,572.64	Mean nnes 1,372.27 545.34 3,022.13	Q85 1,836.58 725.81 4,160.17	2.6% 1.0% 5.7%	272.79 109.61 615.64	Mode In to 278.88 113.69 735.39	Mean nnes 671.30 271.23 1,553.67	Q85 1,062.38 429.29 2,479.87	TC 2.5% 1.0% 5.7%
Waste water Air Surface water Soil	918.66 368.03 1,932.63 962.52	Mode In to 1,149.33 462.94 2,572.64 1,220.28	Mean nnes 1,372.27 545.34 3,022.13 1,520.06	Q85 1,836.58 725.81 4,160.17 2,099.85	2.6% 1.0% 5.7% 2.9%	272.79 109.61 615.64 307.94	Mode In to 278.88 113.69 735.39 476.97	Mean nnes 671.30 271.23 1,553.67 780.34	Q85 1,062.38 429.29 2,479.87 1,248.84	TC 2.5% 1.0% 5.7% 2.9%
Waste water Air Surface water Soil Landfill - CDW	918.66 368.03 1,932.63 962.52 0.00	Mode In to 1,149.33 462.94 2,572.64 1,220.28 0.00	Mean nnes 1,372.27 545.34 3,022.13 1,520.06 0.00	Q85 1,836.58 725.81 4,160.17 2,099.85 0.00	2.6% 1.0% 5.7% 2.9% 0.0%	272.79 109.61 615.64 307.94 0.00	Mode In to 278.88 113.69 735.39 476.97 0.00	Mean nnes 671.30 271.23 1,553.67 780.34 0.00	Q85 1,062.38 429.29 2,479.87 1,248.84 0.00	TC 2.5% 1.0% 5.7% 2.9% 0.0%
Waste water Air Surface water Soil Landfill - CDW Landfill - RW	918.66 368.03 1,932.63 962.52 0.00 163.38	Mode In to 1,149.33 462.94 2,572.64 1,220.28 0.00 215.78	Mean nnes 1,372.27 545.34 3,022.13 1,520.06 0.00 246.75	Q85 1,836.58 725.81 4,160.17 2,099.85 0.00 331.05	2.6% 1.0% 5.7% 2.9% 0.0% 0.5%	272.79 109.61 615.64 307.94 0.00 340.78	Mode In to 278.88 113.69 735.39 476.97 0.00 444.75	Mean nnes 671.30 271.23 1,553.67 780.34 0.00 839.44	Q85 1,062.38 429.29 2,479.87 1,248.84 0.00 1,328.00	TC 2.5% 1.0% 5.7% 2.9% 0.0% 3.1%

		Flows	of CB in Finl	and			Flows	s of CB in Fra	nce	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	nnes		
Waste water	850.53	1,054.50	1,294.97	1,753.71	2.6%	5,951.13	7,479.40	7,671.06	9,402.14	1.6%
Air	338.62	432.90	512.92	689.96	1.0%	2,764.36	3,230.49	3,396.95	4,037.67	0.7%
Surface water	1,807.22	2,305.85	2,879.44	3,986.42	5.7%	11,954.36	15,044.59	16,377.64	20,843.66	3.5%
Soil	905.78	1,140.71	1,449.10	2,013.69	2.9%	5,985.85	7,626.97	8,251.77	10,530.96	1.7%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	2,635.34	3,352.55	4,029.92	5,454.33	8.0%	23,610.82	28,696.24	30,364.84	37,216.96	6.4%
Incineration	5,509.57	7,025.20	8,434.25	11,407.76	16.7%	31,663.07	38,415.17	40,660.77	49,796.26	8.6%
Recycling	21,870.32	26,848.70	31,953.26	41,941.07	63.2%	162,051.76	184,109.48	182,905.36	203,563.07	38.6%
Export	0.00	0.00	0.00	0.00	0.0%	161,622.20	178,759.55	183,616.91	205,906.46	38.8%
		Flows	of CB in Gern	nanv			Elow	of CB in Gre		
				nany			FIOWS		ece	
	Q15				Mean TC	O15				Mean TC
То	Q15	Mode In to	Mean	Q85	Mean TC	Q15	Mode In to	Mean	Q85	Mean TC
To Waste water	Q15 7,307.75	Mode	Mean			Q15 1,160.39	Mode	Mean		
		Mode In to	Mean nnes	Q85	тс		Mode In to	Mean nnes	Q85	тс
Waste water	7,307.75	Mode In to 8,914.13	Mean nnes 9,661.36	Q85 12,042.97	TC 1.8%	1,160.39	Mode In to 1,373.86	Mean nnes 1,648.17	Q85 2,148.83	TC 2.7%
Waste water Air	7,307.75 3,291.57	Mode In to 8,914.13 3,951.56	Mean nnes 9,661.36 4,155.53	Q85 12,042.97 5,031.28	TC 1.8% 0.8%	1,160.39 471.85	Mode In to 1,373.86 567.78	Mean nnes 1,648.17 659.93	Q85 2,148.83 851.68	TC 2.7% 1.1%
Waste water Air Surface water	7,307.75 3,291.57 15,787.93	Mode In to 8,914.13 3,951.56 19,687.77	Mean nnes 9,661.36 4,155.53 21,760.33	Q85 12,042.97 5,031.28 27,836.43	TC 1.8% 0.8% 4.0%	1,160.39 471.85 2,340.90	Mode In to 1,373.86 567.78 2,936.66	Mean nnes 1,648.17 659.93 3,519.73	Q85 2,148.83 851.68 4,743.45	TC 2.7% 1.1% 5.7%
Waste water Air Surface water Soil	7,307.75 3,291.57 15,787.93 7,875.21	Mode In to 8,914.13 3,951.56 19,687.77 9,759.90	Mean nnes 9,661.36 4,155.53 21,760.33 10,942.69	Q85 12,042.97 5,031.28 27,836.43 14,049.68	TC 1.8% 0.8% 4.0% 2.0%	1,160.39 471.85 2,340.90 1,168.54	Mode In to 1,373.86 567.78 2,936.66 1,511.64	Mean nnes 1,648.17 659.93 3,519.73 1,771.92	Q85 2,148.83 851.68 4,743.45 2,395.81	TC 2.7% 1.1% 5.7% 2.9%
Waste water Air Surface water Soil Landfill - CDW	7,307.75 3,291.57 15,787.93 7,875.21 0.00	Mode In to 8,914.13 3,951.56 19,687.77 9,759.90 0.00	Mean nnes 9,661.36 4,155.53 21,760.33 10,942.69 0.00	Q85 12,042.97 5,031.28 27,836.43 14,049.68 0.00	TC 1.8% 0.8% 4.0% 2.0% 0.0%	1,160.39 471.85 2,340.90 1,168.54 0.00	Mode In to 1,373.86 567.78 2,936.66 1,511.64 0.00	Mean nnes 1,648.17 659.93 3,519.73 1,771.92 0.00	Q85 2,148.83 851.68 4,743.45 2,395.81 0.00	TC 2.7% 1.1% 5.7% 2.9% 0.0%
Waste water Air Surface water Soil Landfill - CDW Landfill - RW	7,307.75 3,291.57 15,787.93 7,875.21 0.00 290.48	Mode In to 8,914.13 3,951.56 19,687.77 9,759.90 0.00 351.41	Mean nnes 9,661.36 4,155.53 21,760.33 10,942.69 0.00 366.09	Q85 12,042.97 5,031.28 27,836.43 14,049.68 0.00 441.93	TC 1.8% 0.8% 4.0% 2.0% 0.0% 0.1%	1,160.39 471.85 2,340.90 1,168.54 0.00 11,853.37	Mode In to 1,373.86 567.78 2,936.66 1,511.64 0.00 15,154.92	Mean nnes 1,648.17 659.93 3,519.73 1,771.92 0.00 16,847.14	Q85 2,148.83 851.68 4,743.45 2,395.81 0.00 21,959.88	TC 2.7% 1.1% 5.7% 2.9% 0.0% 27.1%

		Flows	of CB in Hung	gary		Flows of CB in Ireland				
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnoc				In tor	nec		
То		111 (0	111105					11105		
Waste water	593.62	721.56	779.17	969.03	0.5%	665.06	931.76	1,084.32	1,512.77	2.6%
Air	317.62	377.82	399.87	483.05	0.3%	269.69	353.57	436.86	605.60	1.0%
Surface water	1,035.03	1,348.17	1,498.48	1,970.29	1.1%	1,369.67	1,725.31	2,369.41	3,399.01	5.7%
Soil	518.33	676.03	753.60	994.99	0.5%	687.73	923.49	1,193.57	1,715.90	2.9%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	4,478.33	5,427.87	5,500.78	6,510.88	3.9%	4,194.70	5,316.80	7,021.60	9,858.68	16.8%
Incineration	790.37	977.57	979.78	1,167.30	0.7%	1,920.31	2,649.51	3,221.50	4,533.27	7.7%
Recycling	14,136.68	17,463.06	17,315.16	20,442.97	12.1%	16,410.91	28,597.65	26,451.60	36,349.98	63.3%
Export	108,717.10	115,648.50	115,479.13	122,219.64	80.9%	0.00	0.00	0.00	0.00	0.0%
		Flov	ws of CB in Ita	ly			Flow	rs of CB in Lat	tvia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnoc				In tor	nec		
То		111 (0	111105					11105		
Waste water	5,225.46	6,166.45	6,692.73	8,173.27	1.5%	334.44	526.93	734.87	1,131.33	2.5%
Air	2,445.71	2,901.52	2,991.91	3,542.45	0.7%	136.89	220.38	298.35	457.40	1.0%
Surface water	10,113.13	12,839.75	13,864.54	17,645.53	3.2%	717.40	1,182.50	1,660.97	2,602.45	5.7%
Soil	5,046.47	6,326.49	6,964.12	8,899.80	1.6%	359.52	584.16	835.91	1,313.57	2.9 %
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	24,137.90	29,132.80	30,990.87	37,947.71	7.2%	3,288.66	3,575.03	7,387.74	11,424.12	25.3%
Incineration	23,442.28	28,354.46	30,070.95	36,820.43	7.0%	19.69	22.86	44.38	68.71	0.2%
Recycling	135,255.16	153,278.76	153,209.69	171,183.74	35.5%	8,364.36	24,619.04	18,256.63	28,018.62	62.5%
Export	166,503.73	182,600.26	187,064.87	207,978.75	43.3%	0.00	0.00	0.00	0.00	0.0%

		Flows	s of CB in Lith	nuania						
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	onnes				In to	nnes		
Waste water	393.99	416.64	796.42	1,194.54	2.5%	497.12	762.37	901.32	1,311.83	2.6%
Air	159.85	229.11	321.92	481.33	1.0%	202.87	291.19	365.68	527.55	1.0%
Surface water	839.33	1,300.31	1,791.19	2,745.61	5.7%	1,035.41	1,560.91	1,994.24	2,968.68	5.7%
Soil	420.32	655.39	900.01	1,381.77	2.9%	518.24	724.61	1,004.72	1,498.52	2.9%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	4,065.39	6,351.20	8,435.24	12,709.59	26.8%	799.48	1,365.33	1,504.90	2,211.26	4.3%
Incineration	0.00	0.00	0.00	0.00	0.0%	3,575.73	5,881.23	6,701.85	9,838.02	19.1%
Recycling	9,565.64	17,879.37	19,244.19	28,761.92	61.1%	12,546.44	16,957.93	22,660.20	32,678.25	64.5%
Export	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
		Flor	ws of CB in N	lalta			Flows of C	CB in the Net	herlands	
	Q15	Flor Mode	ws of CB in M Mean	lalta Q85	Mean TC	Q15	Flows of C	CB in the Net	herlands Q85	Mean TC
То	Q15	Mode			Mean TC	Q15		Mean		
To Waste water	Q15 191.96	Mode	Mean		Mean TC 2.5%	Q15 915.94	Mode	Mean		
		Mode In to	Mean onnes	Q85			Mode In to	Mean nnes	Q85	тс
Waste water	191.96	Mode In to 588.19	Mean onnes 584.06	Q85 969.19	2.5%	915.94	Mode In to 1,046.83	Mean nnes 1,085.75	Q85 1,256.17	TC 0.6%
Waste water Air	191.96 79.05	Mode In to 588.19 217.06	Mean onnes 584.06 238.83	Q85 969.19 394.66	2.5% 1.0%	915.94 543.36	Mode In to 1,046.83 644.45	Mean nnes 1,085.75 657.41	Q85 1,256.17 771.71	TC 0.6% 0.4%
Waste water Air Surface water	191.96 79.05 430.93	Mode In to 588.19 217.06 1,272.82	Mean onnes 584.06 238.83 1,350.20	Q85 969.19 394.66 2,260.04	2.5% 1.0% 5.7%	915.94 543.36 690.46	Mode In to 1,046.83 644.45 873.02	Mean nnes 1,085.75 657.41 986.35	Q85 1,256.17 771.71 1,286.61	TC 0.6% 0.4% 0.6%
Waste water Air Surface water Soil	191.96 79.05 430.93 215.97	Mode In to 588.19 217.06 1,272.82 578.29	Mean onnes 584.06 238.83 1,350.20 679.76	Q85 969.19 394.66 2,260.04 1,137.23	2.5% 1.0% 5.7% 2.9%	915.94 543.36 690.46 345.35	Mode In to 1,046.83 644.45 873.02 430.63	Mean nnes 1,085.75 657.41 986.35 495.88	Q85 1,256.17 771.71 1,286.61 648.88	TC 0.6% 0.4% 0.6% 0.3%
Waste water Air Surface water Soil Landfill - CDW	191.96 79.05 430.93 215.97 0.00	Mode In to 588.19 217.06 1,272.82 578.29 0.00	Mean onnes 584.06 238.83 1,350.20 679.76 0.00	Q85 969.19 394.66 2,260.04 1,137.23 0.00	2.5% 1.0% 5.7% 2.9% 0.0%	915.94 543.36 690.46 345.35 0.00	Mode In to 1,046.83 644.45 873.02 430.63 0.00	Mean nnes 1,085.75 657.41 986.35 495.88 0.00	Q85 1,256.17 771.71 1,286.61 648.88 0.00	TC 0.6% 0.4% 0.6% 0.3% 0.0%
Waste water Air Surface water Soil Landfill - CDW Landfill - RW	191.96 79.05 430.93 215.97 0.00 2,056.63	Mode In to 588.19 217.06 1,272.82 578.29 0.00 6,028.47	Mean onnes 584.06 238.83 1,350.20 679.76 0.00 6,242.81	Q85 969.19 394.66 2,260.04 1,137.23 0.00 10,307.87	2.5% 1.0% 5.7% 2.9% 0.0% 26.3%	915.94 543.36 690.46 345.35 0.00 51.18	Mode In to 1,046.83 644.45 873.02 430.63 0.00 63.65	Mean nnes 1,085.75 657.41 986.35 495.88 0.00 69.53	Q85 1,256.17 771.71 1,286.61 648.88 0.00 88.24	TC 0.6% 0.4% 0.6% 0.3% 0.0% 0.0%

		Flows	of CB in No	rway		Flows of CB in Poland				
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	nnes		
Waste water	944.02	1,175.76	1,396.58	1,860.80	2.6%	1,969.48	2,537.16	2,699.58	3,439.80	1.4%
Air	383.21	474.80	560.03	741.16	1.0%	722.36	908.51	969.43	1,220.90	0.5%
Surface water	1,939.43	2,568.85	3,031.03	4,167.51	5.7%	4,929.15	6,409.35	6,840.53	8,763.67	3.5%
Soil	968.29	1,258.30	1,522.56	2,096.22	2.9%	2,468.21	3,088.63	3,440.05	4,422.26	1.7%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	227.45	284.16	345.08	465.84	0.6%	19,081.85	23,066.39	23,303.20	27,538.30	11.8%
Incineration	7,936.65	10,141.64	11,954.74	16,060.13	22.4%	5,455.77	6,566.41	6,718.89	7,988.29	3.4%
Recycling	24,228.58	23,798.71	34,565.07	44,777.91	64.8%	64,235.77	75,178.55	74,117.53	83,792.86	37.6%
Export	0.00	0.00	0.00	0.00	0.0%	70,248.88	76,867.70	78,789.69	87,524.20	40.0%
		Flows	of CB in Por	tuasl			Flows	of CB in Rom	ania	
		110W3	OI CD III POI	tuyai			FIOWS		Idfild	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То	Q15		Mean		Mean TC	Q15		Mean		
To Waste water	Q15 774.63	Mode	Mean		Mean TC 0.9%	Q15 552.31	Mode	Mean		
		Mode In to	Mean nnes	Q85			Mode In to	Mean nnes	Q85	TC
Waste water	774.63	Mode In to 958.76	Mean nnes 1,043.10	Q85 1,315.11	0.9%	552.31	Mode In to 689.99	Mean nnes 765.44	Q85 981.95	ТС 0.5%
Waste water Air	774.63 351.56	Mode In to 958.76 428.16	Mean nnes 1,043.10 448.77	Q85 1,315.11 547.89	0.9% 0.4%	552.31 234.57	Mode In to 689.99 293.57	Mean nnes 765.44 308.92	Q85 981.95 384.37	TC 0.5% 0.2%
Waste water Air Surface water	774.63 351.56 1,655.40	Mode In to 958.76 428.16 2,174.92	Mean nnes 1,043.10 448.77 2,345.89	Q85 1,315.11 547.89 3,046.46	0.9% 0.4% 2.1%	552.31 234.57 1,249.43	Mode In to 689.99 293.57 1,640.31	Mean nnes 765.44 308.92 1,804.03	Q85 981.95 384.37 2,367.04	TC 0.5% 0.2% 1.2%
Waste water Air Surface water Soil	774.63 351.56 1,655.40 826.70	Mode In tor 958.76 428.16 2,174.92 1,045.98	Mean nnes 1,043.10 448.77 2,345.89 1,180.27	Q85 1,315.11 547.89 3,046.46 1,538.32	0.9% 0.4% 2.1% 1.1%	552.31 234.57 1,249.43 626.43	Mode In to 689.99 293.57 1,640.31 845.89	Mean nnes 765.44 308.92 1,804.03 906.98	Q85 981.95 384.37 2,367.04 1,191.12	TC 0.5% 0.2% 1.2% 0.6%
Waste water Air Surface water Soil Landfill - CDW	774.63 351.56 1,655.40 826.70 0.00	Mode In tor 958.76 428.16 2,174.92 1,045.98 0.00	Mean nnes 1,043.10 448.77 2,345.89 1,180.27 0.00	Q85 1,315.11 547.89 3,046.46 1,538.32 0.00	0.9% 0.4% 2.1% 1.1% 0.0%	552.31 234.57 1,249.43 626.43 0.00	Mode In to 689.99 293.57 1,640.31 845.89 0.00	Mean nnes 765.44 308.92 1,804.03 906.98 0.00	Q85 981.95 384.37 2,367.04 1,191.12 0.00	TC 0.5% 0.2% 1.2% 0.6% 0.0%
Waste water Air Surface water Soil Landfill - CDW Landfill - RW	774.63 351.56 1,655.40 826.70 0.00 6,326.42	Mode In to 958.76 428.16 2,174.92 1,045.98 0.00 7,620.42	Mean nnes 1,043.10 448.77 2,345.89 1,180.27 0.00 7,651.48	Q85 1,315.11 547.89 3,046.46 1,538.32 0.00 8,969.41	0.9% 0.4% 2.1% 1.1% 0.0% 6.9%	552.31 234.57 1,249.43 626.43 0.00 6,067.68	Mode In to 689.99 293.57 1,640.31 845.89 0.00 7,381.15	Mean nnes 765.44 308.92 1,804.03 906.98 0.00 7,475.14	Q85 981.95 384.37 2,367.04 1,191.12 0.00 8,871.20	TC 0.5% 0.2% 1.2% 0.6% 0.0% 5.1%

		Flows o	f CB in the Slo	vakia						
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnoc				In tor	nnec		
То		111 (0	111105					11105		
Waste water	315.33	381.23	399.40	484.50	1.7%	303.46	347.37	701.11	1,094.64	2.5%
Air	144.83	168.98	175.69	206.75	0.7%	121.04	246.12	282.68	441.18	1.0%
Surface water	588.03	740.10	803.41	1,021.17	3.3%	672.33	762.33	1,612.15	2,548.79	5.7%
Soil	293.58	371.42	403.90	515.52	1.7%	337.39	463.16	811.00	1,284.95	2.9%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	2,540.33	2,969.44	3,217.96	3,916.95	13.3%	3,092.15	5,715.94	7,210.31	11,251.94	25.5%
Incineration	413.06	490.07	527.84	646.17	2.2%	0.00	0.00	0.00	0.00	0.0%
Recycling	7,698.62	8,659.45	8,693.72	9,686.62	36.0%	7,821.04	20,272.50	17,702.41	27,414.54	62.5%
Export	8,797.04	9,770.08	9,895.52	11,020.10	41.0%	0.00	0.00	0.00	0.00	0.0%
		Flow	/s of CB in Spa	in			Flows	s of CB in Swe	eden	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnoc				In to	2005		
То		111 10	lines					lities		
Waste water	4,508.13	5,426.24	5,758.71	7,025.99	2.6%	627.29	718.51	756.26	887.35	0.8%
Air	1,861.74	2,204.51	2,309.12	2,759.56	1.1%	350.38	419.02	421.74	493.47	0.4%
Surface water	9,260.83	11,886.67	12,484.47	15,728.95	5.7%	683.84	896.58	968.41	1,258.20	1.0%
Soil	4,615.08	5,826.44	6,269.64	7,946.94	2.9 %	341.76	443.49	487.34	635.07	0.5%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	36,649.79	44,933.94	46,043.15	55,607.64	20.9 %	31.00	38.00	41.90	53.04	0.0%
Incineration	6,233.70	7,540.46	7,896.36	9,597.58	3.6%	3,093.47	3,848.91	4,129.12	5,184.72	4.1%
Recycling	128,146.46	140,340.57	139,140.28	150,071.09	63.3%	8,984.35	10,500.37	10,821.68	12,664.84	10.8%
Export	0.00	0.00	0.00	0.00	0.0%	78,603.85	81,801.35	82,157.61	85,706.66	82.3%

		Flows o	of CB in Switz	erland			Flows of CB	in the United	l Kingdom	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	nnes		
Waste water	939.43	1,194.73	1,351.22	1,769.98	1.3%	5,465.24	6,361.78	6,546.06	7,636.43	1.7%
Air	343.06	447.37	496.33	652.44	0.5%	2,340.24	2,711.04	2,735.89	3,133.27	0.7%
Surface water	2,345.24	3,074.02	3,370.52	4,418.22	3.3%	15,135.19	17,851.21	18,706.11	22,291.78	4.8%
Soil	1,171.15	1,579.50	1,696.94	2,232.30	1.7%	3,166.94	3,991.12	4,320.76	5,487.92	1.1%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.00	0.00	0.00	0.00	0.0%	42,955.57	50,200.93	50,807.74	58,714.52	13.1%
Incineration	9,597.67	11,768.32	12,639.20	15,730.69	12.4%	32,992.66	38,090.12	39,046.54	45,164.55	10.1%
Recycling	31,696.42	36,891.92	38,883.27	46,324.49	38.1%	98,222.38	110,113.93	111,992.52	125,822.31	28.9%
Export	36,014.21	42,957.49	43,493.52	50,948.38	42.7%	135,652.33	149,461.60	153,286.48	171,299.06	39.6%

		F	lows of Cu in	Austria			Flo	ows of Cu in	Belgium	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In tor	nnes				In ton	nes		
То										
Waste water	0.17	0.22	0.23	0.30	16.0%	0.16	0.21	0.22	0.28	3.3%
Air	0.05	0.06	0.07	0.09	4.6%	0.05	0.07	0.07	0.10	1.1%
Surface water	0.00	0.00	0.00	0.00	0.1%	0.00	0.00	0.00	0.00	0.0%
Soil	0.00	0.00	0.00	0.01	0.3%	0.00	0.00	0.00	0.01	0.1%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.00	0.00	0.00	0.00	0.1%	0.00	0.00	0.00	0.00	0.0%
Incineration	0.01	0.01	0.02	0.02	1.1%	0.02	0.02	0.02	0.03	0.4%
Recycling	0.30	0.40	0.40	0.51	27.7%	0.25	0.33	0.34	0.44	5.1%
Export	0.56	0.71	0.73	0.90	50.0%	4.65	6.06	6.04	7.42	90.1%
		FI	lows of Cu in	Bulgaria			Fle	ows of Cu in	Croatia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In tor	nec				In ton	noc		
То		111 (01	iiies				In torn	1103		
Waste water	0.03	0.04	0.04	0.05	1.0%	0.09	0.10	0.20	0.31	31.9%
Air	0.01	0.02	0.02	0.02	0.5%	0.02	0.03	0.06	0.09	9.1%
Surface water	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.2%
Soil	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.01	0.6%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.01	0.01	0.01	0.01	0.2%	0.06	0.06	0.13	0.20	19.8%
Incineration	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Recycling	0.03	0.04	0.05	0.06	1.1%	0.11	0.15	0.24	0.38	38.4%
Export	2.99	3.95	3.89	4.78	97.1%	0.00	0.00	0.00	0.00	0.0%

	Flows of Cu in Cy					Flows of Cu in Czech Republic				
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnes				In ton	nec		
То			ines				In ton	1103		
Waste water	0.01	0.01	0.01	0.01	11.8%	0.20	0.25	0.32	0.45	31.9%
Air	0.00	0.00	0.00	0.00	3.5%	0.05	0.07	0.09	0.13	9.1%
Surface water	0.00	0.00	0.00	0.00	0.1%	0.00	0.00	0.00	0.00	0.2%
Soil	0.00	0.00	0.00	0.00	0.2%	0.00	0.00	0.01	0.01	0.6%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.00	0.01	0.01	0.01	7.1%	0.05	0.06	0.08	0.11	7.8%
Incineration	0.00	0.00	0.00	0.00	0.0%	0.01	0.02	0.02	0.03	2.0%
Recycling	0.01	0.01	0.01	0.02	13.8%	0.31	0.38	0.49	0.68	48.4%
Export	0.04	0.06	0.06	0.07	63.5%	0.00	0.00	0.00	0.00	0.0%
		Flo	ows of Cu in	Denmark	<u>(</u>		Flo	ows of Cu in	Estonia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnes				In ton	nes		
То			ines				in ton	1105		
Waste water	0.13	0.17	0.20	0.27	14.1%	0.05	0.06	0.13	0.22	25.5%
Air	0.03	0.05	0.06	0.08	4.0%	0.01	0.02	0.04	0.06	7.3%
Surface water	0.00	0.00	0.00	0.00	0.1%	0.00	0.00	0.00	0.00	0.2%
Soil	0.00	0.00	0.00	0.01	0.3%	0.00	0.00	0.00	0.00	0.5%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.00	0.00	0.00	0.00	0.1%	0.00	0.00	0.01	0.02	1.9%
Incineration	0.03	0.04	0.05	0.06	3.3%	0.03	0.03	0.07	0.12	14.0%
Recycling	0.21	0.28	0.31	0.42	22.3%	0.06	0.07	0.16	0.27	30.8%

		FI	ows of Cu in	Finland			Fle	ows of Cu in	France	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnes				In ton	nes		
То		111 (01	inco							
Waste water	0.09	0.11	0.13	0.16	5.1%	1.82	2.38	2.48	3.15	24.8%
Air	0.03	0.03	0.04	0.05	1.6%	0.46	0.60	0.70	0.94	7.0%
Surface water	0.00	0.00	0.00	0.00	0.0%	0.01	0.02	0.02	0.03	0.2%
Soil	0.00	0.00	0.00	0.00	0.1%	0.03	0.05	0.05	0.06	0.5%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.00	0.00	0.00	0.00	0.1%	0.08	0.11	0.12	0.16	1.2%
Incineration	0.00	0.01	0.01	0.01	0.3%	0.11	0.14	0.17	0.22	1.7%
Recycling	0.16	0.20	0.21	0.27	8.6%	3.18	4.18	4.22	5.26	42.3%
Export	1.59	2.01	2.07	2.54	84.1%	1.69	2.17	2.23	2.78	22.4%
		Flo	ows of Cu in	Germany	,		Flo	ows of Cu in	Greece	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnec				In ton	noc		
То			1103				Inton	1103		
Waste water	1.45	1.87	1.99	2.53	17.6%	0.21	0.26	0.33	0.46	31.9%
Air	0.38	0.50	0.58	0.78	5.1%	0.05	0.08	0.09	0.14	9.1%
Surface water	0.01	0.01	0.01	0.02	0.1%	0.00	0.00	0.00	0.00	0.2%
Soil	0.03	0.03	0.04	0.05	0.3%	0.00	0.01	0.01	0.01	0.6%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.00	0.00	0.00	0.00	0.0%	0.04	0.06	0.08	0.11	7.2%
Incineration	0.21	0.26	0.29	0.37	2.6%	0.00	0.00	0.00	0.00	0.0%
	2.52	3.16	3.35	4.18	29.6%	0.34	0.41	0.53	0.73	50.9%
Recycling										

		FI	ows of Cu in	Hungary			FI	lows of Cu in	Ireland	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In tor	nnes	1			In ton	nes	1	
То		11 (01								
Waste water	0.13	0.17	0.24	0.34	28.7%	0.13	0.15	0.24	0.36	32.0%
Air	0.03	0.04	0.07	0.10	8.1%	0.03	0.04	0.07	0.10	9.0%
Surface water	0.00	0.00	0.00	0.00	0.2%	0.00	0.00	0.00	0.00	0.2%
Soil	0.00	0.00	0.00	0.01	0.5%	0.00	0.00	0.00	0.01	0.6%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.03	0.04	0.06	0.09	7.0%	0.02	0.03	0.03	0.05	4.1%
Incineration	0.01	0.01	0.01	0.02	1.3%	0.01	0.01	0.01	0.02	1.9%
Recycling	0.21	0.27	0.36	0.53	44.0%	0.21	0.32	0.40	0.58	52.2%
Export	0.05	0.06	0.08	0.12	10.1%	0.00	0.00	0.00	0.00	0.0%
			Flows of Cu i	in Italy			F	lows of Cu ir	n Latvia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In tor	nec				In ton	noc		
То		111 (01	iiies				111 (011	1105		
Waste water	1.61	2.18	2.18	2.75	32.0%	0.06	0.09	0.17	0.28	31.9%
Air	0.41	0.52	0.61	0.83	9.0%	0.02	0.02	0.05	0.08	9.1%
Surface water	0.01	0.01	0.02	0.02	0.2%	0.00	0.00	0.00	0.00	0.2%
Soil	0.03	0.04	0.04	0.05	0.6%	0.00	0.00	0.00	0.01	0.6%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.21	0.28	0.30	0.38	4.4%	0.04	0.07	0.10	0.17	19.6%
Incineration	0.21	0.28	0.29	0.37	4.2%	0.00	0.00	0.00	0.00	0.1%
Recycling	2.56	3.26	3.37	4.19	49.5%	0.08	0.11	0.20	0.33	38.4%
Export	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%

		Flo	ows of Cu in	Lithuania	Ì		Flows	Flows of Cu in Luxembourg			
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC	
		In to	nnes				In ton	nes			
То							in con				
Waste water	0.07	0.07	0.18	0.29	31.9%	0.06	0.09	0.17	0.28	31.9%	
Air	0.02	0.03	0.05	0.08	9.1%	0.02	0.03	0.05	0.08	9.1%	
Surface water	0.00	0.00	0.00	0.00	0.2%	0.00	0.00	0.00	0.00	0.2%	
Soil	0.00	0.00	0.00	0.01	0.6%	0.00	0.00	0.00	0.01	0.6%	
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%	
Landfill - RW	0.01	0.02	0.02	0.04	4.3%	0.00	0.00	0.00	0.01	0.9%	
Incineration	0.00	0.00	0.00	0.00	0.0%	0.01	0.01	0.02	0.03	3.9%	
Recycling	0.13	0.28	0.31	0.49	53.8%	0.11	0.15	0.29	0.47	53.5%	
Export	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%	
		F	lows of Cu i	n Malta			Flows	of Cu in the	Netherla	nds	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC	
		In to	nnoc				In ton	noc			
То		In to	nnes				In ton	nes			
To Waste water	0.05	In to 0.11	nnes 0.15	0.26	31.9%	0.38	In ton 0.48	nes 0.54	0.71	31.9%	
-	0.05 0.01			0.26 0.07	31.9% 9.1%	0.38 0.10			0.71 0.21	31.9% 9.0%	
Waste water		0.11	0.15				0.48	0.54			
Waste water Air	0.01	0.11 0.02	0.15 0.04	0.07	9.1%	0.10	0.48 0.12	0.54 0.15	0.21	9.0%	
Waste water Air Surface water	0.01 0.00	0.11 0.02 0.00	0.15 0.04 0.00	0.07 0.00	9.1% 0.2%	0.10 0.00	0.48 0.12 0.00	0.54 0.15 0.00	0.21 0.01	9.0% 0.2%	
Waste water Air Surface water Soil	0.01 0.00 0.00	0.11 0.02 0.00 0.00	0.15 0.04 0.00 0.00	0.07 0.00 0.00	9.1% 0.2% 0.6%	0.10 0.00 0.01	0.48 0.12 0.00 0.01	0.54 0.15 0.00 0.01	0.21 0.01 0.01	9.0% 0.2% 0.6%	
Waste water Air Surface water Soil Landfill - CDW	0.01 0.00 0.00 0.00	0.11 0.02 0.00 0.00 0.00	0.15 0.04 0.00 0.00 0.00	0.07 0.00 0.00 0.00	9.1% 0.2% 0.6% 0.0%	0.10 0.00 0.01 0.00	0.48 0.12 0.00 0.01 0.00	0.54 0.15 0.00 0.01 0.00	0.21 0.01 0.01 0.00	9.0% 0.2% 0.6% 0.0%	
Waste water Air Surface water Soil Landfill - CDW Landfill - RW	0.01 0.00 0.00 0.00 0.02	0.11 0.02 0.00 0.00 0.00 0.07	0.15 0.04 0.00 0.00 0.00 0.08	0.07 0.00 0.00 0.00 0.14	9.1% 0.2% 0.6% 0.0% 17.0%	0.10 0.00 0.01 0.00 0.00	0.48 0.12 0.00 0.01 0.00 0.00	0.54 0.15 0.00 0.01 0.00 0.00	0.21 0.01 0.01 0.00 0.00	9.0% 0.2% 0.6% 0.0% 0.2%	

		FI	ows of Cu in	Norway		Flows of Cu in Poland				
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nes				In to	onnes		
То		111 101	ines				in to	inics		
Waste water	0.24	0.30	0.37	0.51	32.0%	0.33	0.42	0.45	0.58	4.5%
Air	0.06	0.08	0.11	0.15	9.1%	0.10	0.13	0.15	0.19	1.5%
Surface water	0.00	0.00	0.00	0.00	0.2%	0.00	0.00	0.00	0.00	0.0%
Soil	0.00	0.01	0.01	0.01	0.6%	0.01	0.01	0.01	0.01	0.1%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.00	0.00	0.00	0.00	0.1%	0.07	0.09	0.10	0.14	1.0%
Incineration	0.03	0.04	0.05	0.06	4.0%	0.02	0.03	0.03	0.04	0.3%
Recycling	0.41	0.53	0.63	0.84	54.0%	0.48	0.65	0.65	0.83	6.5%
Export	0.00	0.00	0.00	0.00	0.0%	6.62	8.62	8.60	10.58	86.0%
		Flo	ows of Cu in	Portugal			Fle	ows of Cu in	Romania	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
	1									
		In to	nnes				In to	nnes	4	
То		In to	nnes				In to	onnes		
To Waste water	0.19	In to 0.25	nnes 0.30	0.42	29.1%	0.22	In to 0.30	onnes 0.34	0.48	32.0%
-	0.19 0.05			0.42 0.12	29.1% 8.2%	0.22 0.06			0.48 0.14	32.0% 9.1%
Waste water		0.25	0.30				0.30	0.34		
Waste water Air	0.05	0.25 0.07	0.30 0.08	0.12	8.2%	0.06	0.30 0.08	0.34 0.10	0.14	9.1%
Waste water Air Surface water	0.05 0.00	0.25 0.07 0.00	0.30 0.08 0.00	0.12 0.00	8.2% 0.2%	0.06 0.00	0.30 0.08 0.00	0.34 0.10 0.00	0.14 0.00	9.1% 0.2%
Waste water Air Surface water Soil	0.05 0.00 0.00	0.25 0.07 0.00 0.00	0.30 0.08 0.00 0.01	0.12 0.00 0.01	8.2% 0.2% 0.6%	0.06 0.00 0.00	0.30 0.08 0.00 0.01	0.34 0.10 0.00 0.01	0.14 0.00 0.01	9.1% 0.2% 0.6%
Waste water Air Surface water Soil Landfill - CDW	0.05 0.00 0.00 0.00	0.25 0.07 0.00 0.00 0.00	0.30 0.08 0.00 0.01 0.00	0.12 0.00 0.01 0.00	8.2% 0.2% 0.6% 0.0%	0.06 0.00 0.00 0.00	0.30 0.08 0.00 0.01 0.00	0.34 0.10 0.00 0.01 0.00	0.14 0.00 0.01 0.00	9.1% 0.2% 0.6% 0.0%
Waste water Air Surface water Soil Landfill - CDW Landfill - RW	0.05 0.00 0.00 0.00 0.04	0.25 0.07 0.00 0.00 0.00 0.05	0.30 0.08 0.00 0.01 0.00 0.07	0.12 0.00 0.01 0.00 0.09	8.2% 0.2% 0.6% 0.0% 6.3%	0.06 0.00 0.00 0.00 0.20	0.30 0.08 0.00 0.01 0.00 0.26	0.34 0.10 0.00 0.01 0.00 0.32	0.14 0.00 0.01 0.00 0.45	9.1% 0.2% 0.6% 0.0% 29.9%

		Flow	ws of Cu in th	e Slovaki	a		Flo	ows of Cu in	Slovenia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In tor	nnes	1			In ton	nes		
То		11 (01					in con	1105		
Waste water	0.12	0.16	0.23	0.35	31.9%	0.07	0.10	0.18	0.29	31.9%
Air	0.03	0.04	0.07	0.10	9.1%	0.02	0.02	0.05	0.08	9.1%
Surface water	0.00	0.00	0.00	0.00	0.2%	0.00	0.00	0.00	0.00	0.2%
Soil	0.00	0.00	0.00	0.01	0.6%	0.00	0.00	0.00	0.01	0.6%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.06	0.08	0.12	0.19	17.0%	0.02	0.03	0.04	0.07	7.4%
Incineration	0.01	0.01	0.02	0.03	2.8%	0.00	0.00	0.00	0.00	0.0%
Recycling	0.15	0.18	0.28	0.42	38.4%	0.12	0.18	0.29	0.46	50.8%
Export	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
			Flows of Cu in	n Spain			Fle	ows of Cu in	Sweden	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In tor	nes				In ton	nec		
То		In to	iiies				In ton	nes		
Waste water	0.68	0.89	0.93	1.18	13.2%	0.20	0.26	0.27	0.35	6.6%
Air	0.18	0.24	0.27	0.37	3.9%	0.06	0.07	0.08	0.11	2.0%
Surface water	0.00	0.01	0.01	0.01	0.1%	0.00	0.00	0.00	0.00	0.0%
Soil	0.01	0.02	0.02	0.02	0.2%	0.00	0.00	0.01	0.01	0.1%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.17	0.23	0.24	0.31	3.4%	0.00	0.00	0.00	0.00	0.0%
Incineration	0.03	0.04	0.04	0.05	0.6%	0.02	0.03	0.03	0.04	0.8%
Recycling	1.06	1.36	1.41	1.76	20.2%	0.33	0.43	0.45	0.57	10.9%
Export	3.14	4.03	4.08	5.03	58.4%	2.52	3.25	3.28	4.03	79.5%

		Flov	ws of Cu in S	witzerlar	nd		Flows of	Cu in the U	nited Kin	gdom
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In ton	ines		
Waste water	0.35	0.45	0.49	0.64	23.5%	2.55	3.28	3.46	4.37	32.0%
Air	0.09	0.12	0.14	0.19	6.6%	0.65	0.84	0.98	1.32	9.1%
Surface water	0.00	0.00	0.00	0.01	0.2%	0.02	0.02	0.03	0.04	0.2%
Soil	0.01	0.01	0.01	0.01	0.5%	0.05	0.06	0.07	0.09	0.6%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.00	0.00	0.00	0.00	0.0%	0.29	0.37	0.40	0.52	3.7%
Incineration	0.04	0.06	0.06	0.08	2.9%	0.22	0.29	0.31	0.39	2.9%
Recycling	0.61	0.81	0.83	1.07	39.8%	4.22	5.35	5.56	6.90	51.5%
Export	0.41	0.53	0.56	0.71	26.6%	0.00	0.00	0.00	0.00	0.0%

Modelling results – masses of copper ENM entering technical and environmental compartments (continued)

		FI	lows of Ag in	n Austria			Flo	ws of Ag in	Belgium	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnes				In tor	nec		
То		in to	inics				11 101	inco		
Waste water	0.43	0.53	0.57	0.71	46.7%	0.33	0.39	0.41	0.49	4.6 %
Air	0.03	0.04	0.04	0.06	3.4%	0.04	0.05	0.05	0.06	0.6%
Surface water	0.01	0.01	0.01	0.02	1.0%	0.01	0.01	0.01	0.01	0.1%
Soil	0.01	0.01	0.01	0.01	0.8%	0.01	0.01	0.01	0.01	0.1%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.01	0.01	0.01	0.02	1.2%	0.01	0.01	0.01	0.01	0.1%
Incineration	0.15	0.18	0.20	0.25	16.0%	0.08	0.09	0.10	0.12	1.1%
Recycling	0.28	0.33	0.38	0.48	31.0%	0.25	0.30	0.32	0.38	3.5%
Export	0.00	0.00	0.00	0.00	0.0%	6.84	8.03	8.05	9.25	90.0%
		Fle	ows of Ag in	Bulgaria			Flo	ows of Ag in	Croatia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnes				In tor	nnes		
То		in to					11 101	ines		
Waste water	0.18	0.24	0.30	0.42	45.7%	0.15	0.23	0.27	0.38	45.7%
Air	0.01	0.02	0.02	0.03	3.4%	0.01	0.01	0.02	0.03	3.4%
Surface water	0.00	0.00	0.01	0.01	1.0%	0.00	0.00	0.01	0.01	1.0%
Soil	0.00	0.00	0.01	0.01	0.8%	0.00	0.00	0.00	0.01	0.8%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
					22.4%	0.09	0.14	0.17	0.24	29.4%
Landfill - RW	0.09	0.13	0.15	0.21	22.4%	0.05	0.14	0.17	0.24	
Landfill - RW Incineration	0.09 0.00	0.13 0.01	0.15 0.01	0.21 0.01	1.4%	0.00	0.01	0.01	0.24	1.4%

		Flo	ows of Ag i	n Cyprus	;	Flows of Ag in Czech Republic				ıblic
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In tor	nnes				In tor	nes		
То										
Waste water	0.06	0.20	0.18	0.29	45.5%	0.32	0.41	0.45	0.58	46.2%
Air	0.00	0.01	0.01	0.02	3.4%	0.02	0.03	0.03	0.05	3.4%
Surface water	0.00	0.00	0.00	0.01	1.0%	0.01	0.01	0.01	0.01	1.0%
Soil	0.00	0.00	0.00	0.01	0.8%	0.01	0.01	0.01	0.01	0.8%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.04	0.10	0.11	0.18	27.6%	0.08	0.11	0.12	0.15	12.2%
Incineration	0.00	0.00	0.01	0.01	1.4%	0.08	0.10	0.12	0.15	12.0%
Recycling	0.03	0.08	0.08	0.13	20.4%	0.16	0.21	0.24	0.31	24.5%
Export	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
		Flov	ws of Ag in	Denmar	·k		Flo	ws of Ag ir	n Estonia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In tor	nac		1		In tor	nec		
То		111 (01	11103				111 (01	ines		
Waste water	0.26	0.33	0.36	0.47	38.7%	0.08	0.11	0.20	0.31	45.6%
Air	0.02	0.02	0.03	0.04	2.8%	0.01	0.01	0.01	0.02	3.4%
Surface water	0.00	0.01	0.01	0.01	0.8%	0.00	0.00	0.00	0.01	1.0%
Soil	0.00	0.01	0.01	0.01	0.7%	0.00	0.00	0.00	0.01	0.8%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.01	0.01	0.01	0.02	1.5%	0.01	0.02	0.02	0.03	4.4%
Incineration	0.08	0.11	0.12	0.15	12.7%	0.05	0.13	0.11	0.18	26.2%
Recycling	0.17	0.22	0.25	0.32	26.2%	0.03	0.03	0.08	0.13	18.6%
Export	0.11	0.14	0.16	0.20	16.6%	0.00	0.00	0.00	0.00	0.0%

		Fl	ows of Ag i	in Finland			Flo	ows of Ag i	n France	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	onnes				In tor	nes		
То							111 (01	ines		
Waste water	0.24	0.29	0.35	0.47	43.8%	1.93	2.28	2.31	2.69	42.4%
Air	0.02	0.02	0.03	0.04	3.2%	0.12	0.15	0.16	0.21	3.0%
Surface water	0.00	0.01	0.01	0.01	0.9%	0.03	0.04	0.05	0.07	0.9%
Soil	0.00	0.01	0.01	0.01	0.8%	0.03	0.04	0.04	0.05	0.8%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.03	0.04	0.04	0.05	5.0%	0.30	0.36	0.36	0.43	6.7%
Incineration	0.05	0.06	0.08	0.10	9.7%	0.40	0.47	0.49	0.58	8.9%
Recycling	0.16	0.22	0.25	0.34	31.1%	1.19	1.48	1.48	1.78	27.3%
Export	0.03	0.04	0.04	0.06	5.5%	0.45	0.54	0.55	0.64	10.0%
		Flo	ws of Ag in	n Germany	/		Flo	ows of Ag in	n Greece	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	onnes				In tor	nec		
То		Inte	Jines				111 (01	incs		
Waste water	2.30	2.80	2.82	3.33	15.7%	0.33	0.41	0.46	0.59	46.2%
Air	0.17	0.21	0.24	0.30	1.3%	0.02	0.03	0.03	0.05	3.4%
Surface water	0.04	0.05	0.06	0.08	0.3%	0.01	0.01	0.01	0.01	1.0%
Soil	0.04	0.05	0.05	0.06	0.3%	0.01	0.01	0.01	0.01	0.8%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.05	0.06	0.07	0.09	0.4%	0.15	0.19	0.21	0.27	21.0%
Incineration	0.58	0.69	0.71	0.84	4.0%	0.01	0.01	0.01	0.02	1.4%
Recycling	1.84	2.23	2.28	2.71	12.7%	0.18	0.23	0.26	0.34	26.3%
Export	9.86	11.66	11.69	13.51	65.3%	0.00	0.00	0.00	0.00	0.0%

		Flo	ows of Ag in	Hungary	/		Fle	ows of Ag ir	Ireland	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnes				In tor	nec		
То		111 101	incs				111 (01	inco		
Waste water	0.26	0.34	0.38	0.51	46.1%	0.26	0.31	0.35	0.45	34.8%
Air	0.02	0.02	0.03	0.04	3.4%	0.02	0.02	0.03	0.04	2.5%
Surface water	0.00	0.01	0.01	0.01	1.0%	0.00	0.01	0.01	0.01	0.7%
Soil	0.00	0.01	0.01	0.01	0.8%	0.00	0.01	0.01	0.01	0.6%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.11	0.13	0.16	0.21	19.0%	0.06	0.08	0.08	0.11	8.2%
Incineration	0.03	0.03	0.04	0.05	4.6%	0.06	0.07	0.08	0.11	8.3%
Recycling	0.14	0.16	0.21	0.28	25.2%	0.14	0.17	0.20	0.27	19.9%
Export	0.00	0.00	0.00	0.00	0.0%	0.18	0.23	0.25	0.32	24.9%
			Flows of Ag	in Italv			FI	lows of Ag i	n Latvia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
	Q15	Mode	Mean		Mean TC	Q15	Mode	Mean		Mean TC
То	Q15		Mean		Mean TC	Q15		Mean		Mean TC
To Waste water	Q15 1.75	Mode	Mean		Mean TC 35.2%	Q15 0.09	Mode	Mean		Mean TC 45.6%
		Mode In to	Mean nnes	Q85			Mode In tor	Mean	Q85	
Waste water	1.75	Mode In to 2.05	Mean nnes 2.10	Q85 2.44	35.2%	0.09	Mode In tor 0.11	Mean nnes 0.21	Q85 0.32	45.6%
Waste water Air	1.75 0.10	Mode In to 2.05 0.13	Mean nnes 2.10 0.15	Q85 2.44 0.19	35.2% 2.5%	0.09	Mode In tor 0.11 0.01	Mean nnes 0.21 0.02	Q85 0.32 0.02	45.6% 3.4%
Waste water Air Surface water	1.75 0.10 0.03	Mode In to 2.05 0.13 0.04	Mean nnes 2.10 0.15 0.04	Q85 2.44 0.19 0.06	35.2% 2.5% 0.7%	0.09 0.01 0.00	Mode In tor 0.11 0.01 0.00	Mean nnes 0.21 0.02 0.00	Q85 0.32 0.02 0.01	45.6% 3.4% 1.0%
Waste water Air Surface water Soil	1.75 0.10 0.03 0.03	Mode In too 2.05 0.13 0.04 0.04	Mean nnes 2.10 0.15 0.04 0.04	Q85 2.44 0.19 0.06 0.05	35.2% 2.5% 0.7% 0.6%	0.09 0.01 0.00 0.00	Mode In tor 0.11 0.01 0.00 0.00	Mean nnes 0.21 0.02 0.00 0.00	Q85 0.32 0.02 0.01 0.01	45.6% 3.4% 1.0% 0.8%
Waste water Air Surface water Soil Landfill - CDW	1.75 0.10 0.03 0.03 0.00	Mode In to 2.05 0.13 0.04 0.04 0.00	Mean nnes 2.10 0.15 0.04 0.04 0.00	Q85 2.44 0.19 0.06 0.05 0.00	35.2% 2.5% 0.7% 0.6% 0.0%	0.09 0.01 0.00 0.00 0.00	Mode In tor 0.11 0.01 0.00 0.00 0.00	Mean nnes 0.21 0.02 0.00 0	Q85 0.32 0.02 0.01 0.01 0.00	45.6% 3.4% 1.0% 0.8% 0.0%
Waste water Air Surface water Soil Landfill - CDW Landfill - RW	1.75 0.10 0.03 0.03 0.00 0.41	Mode In to 2.05 0.13 0.04 0.04 0.00 0.48	Mean nnes 2.10 0.15 0.04 0.04 0.00 0.50	Q85 2.44 0.19 0.06 0.05 0.00 0.58	35.2% 2.5% 0.7% 0.6% 0.0% 8.4%	0.09 0.01 0.00 0.00 0.00 0.00	Mode In tor 0.11 0.01 0.00 0.00 0.00 0.08	Mean nnes 0.21 0.02 0.00 0.00 0.00 0.00 0.13	Q85 0.32 0.02 0.01 0.01 0.00 0.21	45.6% 3.4% 1.0% 0.8% 0.0% 29.0%

		Flov	ws of Ag in	Lithuan	ia		Flows	of Ag in Lu	uxembou	ırg
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In tor	nnes		n		In tor	nes		
То		11 101	ines				11 101	ines		
Waste water	0.12	0.17	0.23	0.35	45.8%	0.08	0.13	0.20	0.31	45.7%
Air	0.01	0.01	0.02	0.03	3.4%	0.01	0.01	0.01	0.02	3.4%
Surface water	0.00	0.00	0.00	0.01	1.0%	0.00	0.00	0.00	0.01	1.0%
Soil	0.00	0.00	0.00	0.01	0.8%	0.00	0.00	0.00	0.01	0.8%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.05	0.05	0.09	0.14	18.3%	0.01	0.01	0.02	0.02	3.5%
Incineration	0.00	0.00	0.01	0.01	1.4%	0.02	0.03	0.05	0.08	12.2%
Recycling	0.07	0.08	0.15	0.23	29.4%	0.06	0.08	0.15	0.23	33.5%
Export	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
		Fl	ows of Ag i	in Malta			Flows o	of Ag in the	Netherl	ands
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In tor	nec				In tor	nec		
То		In to	incs				111 (01	ines		
Waste water	0.06	0.17	0.17	0.29	45.4%	0.63	0.76	0.78	0.94	43.5%
Air	0.00	0.01	0.01	0.02	3.4%	0.04	0.05	0.06	0.07	3.1%
Surface water	0.00	0.00	0.00	0.01	1.0%	0.01	0.01	0.02	0.02	0.9%
Soil	0.00	0.00	0.00	0.01	0.8%	0.01	0.01	0.01	0.02	0.8%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.02	0.04	0.07	0.12	18.7%	0.02	0.02	0.02	0.03	1.2%
Incineration	0.00	0.00	0.01	0.01	1.4%	0.30	0.35	0.37	0.44	20.4%
Recycling	0.04	0.06	0.11	0.19	29.4%	0.32	0.39	0.41	0.51	22.9%
Export	0.00	0.00	0.00	0.00	0.0%	0.10	0.12	0.13	0.16	7.2%

		Flo	ws of Ag ir	n Norwa	y		Flo	ows of Ag in	n Poland	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnes				In tor	nes		
То		in to	ines				111 101	ines		
Waste water	0.31	0.37	0.43	0.56	43.9%	0.50	0.61	0.63	0.75	6.6%
Air	0.02	0.03	0.03	0.04	3.2%	0.05	0.06	0.07	0.08	0.7%
Surface water	0.01	0.01	0.01	0.01	0.9%	0.01	0.01	0.01	0.02	0.1%
Soil	0.01	0.01	0.01	0.01	0.8%	0.01	0.01	0.01	0.01	0.1%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.01	0.01	0.01	0.02	1.3%	0.17	0.21	0.22	0.27	2.3%
Incineration	0.10	0.12	0.13	0.17	13.5%	0.06	0.07	0.08	0.09	0.8%
Recycling	0.21	0.27	0.30	0.40	30.7%	0.28	0.34	0.36	0.45	3.8%
Export	0.04	0.05	0.06	0.07	5.7%	6.95	8.03	8.18	9.41	85.6%
		Flo	ws of Ag in	Portuga	al		Flov	ws of Ag in	Romani	a
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnec				In tor	nec		
То		In to	11103				111 (01	ines		
Waste water	0.31	0.39	0.42	0.54	41.8%	0.41	0.50	0.54	0.68	45.9%
Air	0.02	0.03	0.03	0.04	3.0%	0.03	0.03	0.04	0.05	3.4%
Surface water	0.01	0.01	0.01	0.01	0.9%	0.01	0.01	0.01	0.02	1.0%
Soil	0.01	0.01	0.01	0.01	0.8%	0.01	0.01	0.01	0.01	0.8%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.11	0.15	0.15	0.20	15.1%	0.32	0.39	0.43	0.54	36.3%
Incineration	0.05	0.06	0.07	0.09	7.1%	0.01	0.02	0.02	0.03	1.6%
Recycling	0.14	0.19	0.21	0.28	21.0%	0.09	0.12	0.13	0.17	11.0%
Export	0.08	0.09	0.10	0.13	10.4%	0.00	0.00	0.00	0.00	0.0%

		Flow	/s of Ag in tl	he Sloval	cia		Flo	ws of Ag in	Slovenia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnes				In ton	inec		
То			11103				In ton	11103		
Waste water	0.19	0.25	0.31	0.42	45.8%	0.11	0.15	0.22	0.34	45.8%
Air	0.01	0.02	0.02	0.03	3.4%	0.01	0.01	0.02	0.03	3.4%
Surface water	0.00	0.00	0.01	0.01	1.0%	0.00	0.00	0.00	0.01	1.0%
Soil	0.00	0.00	0.01	0.01	0.8%	0.00	0.00	0.00	0.01	0.8%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.10	0.11	0.17	0.23	24.9%	0.05	0.09	0.10	0.15	20.2%
Incineration	0.02	0.03	0.04	0.05	5.3%	0.00	0.00	0.01	0.01	1.4%
Recycling	0.07	0.10	0.13	0.18	18.8%	0.06	0.10	0.13	0.21	27.5%
Export	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
		F	lows of Ag i	n Spain			Flo	ws of Ag in	Sweden	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnes				In ton	inec		
То			11103				In ton	11103		
Waste water	1.36	1.60	1.63	1.91	46.9%	0.43	0.53	0.57	0.71	46.7%
Air	0.08	0.10	0.12	0.15	3.3%	0.03	0.04	0.04	0.06	3.4%
Surface water	0.02	0.03	0.03	0.05	1.0%	0.01	0.01	0.01	0.02	1.0%
Soil	0.02	0.03	0.03	0.04	0.9%	0.01	0.01	0.01	0.01	0.8%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.57	0.68	0.70	0.82	20.0%	0.01	0.01	0.01	0.02	1.2%
Incineration	0.13	0.16	0.16	0.19	4.6%	0.15	0.18	0.20	0.25	16.0%
Recycling	0.64	0.76	0.81	0.98	23.2%	0.28	0.33	0.38	0.48	31.0%
Export	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%

		Flow	s of Ag in S	Switzerla	Ind		Flows of <i>J</i>	Ag in the U	nited Ki	ngdom
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In tor	nes		
Waste water	0.43	0.51	0.54	0.65	33.4%	2.14	2.55	2.56	2.98	47.0%
Air	0.03	0.03	0.04	0.05	2.4%	0.13	0.17	0.18	0.23	3.3%
Surface water	0.01	0.01	0.01	0.02	0.7%	0.03	0.04	0.05	0.07	1.0%
Soil	0.01	0.01	0.01	0.01	0.6%	0.03	0.04	0.05	0.06	0.9%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.01	0.01	0.01	0.02	0.8%	0.55	0.65	0.67	0.79	12.3%
Incineration	0.14	0.16	0.17	0.21	10.8%	0.45	0.53	0.54	0.64	10.0%
Recycling	0.28	0.35	0.37	0.46	23.0%	1.10	1.33	1.38	1.67	25.5%
Export	0.36	0.44	0.46	0.55	28.3%	0.00	0.00	0.00	0.00	0.0%

Modelling results - masses of silver ENM entering technical and environmental compartments (continued)

		Flow	/s of TiO₂ in	Austria			Flow	s of TiO ₂ in	Belgium	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In tor	nnoc				In to	nnes		
То		In to	11103				111 (01	1103		
Waste water	112.81	163.98	187.54	264.50	61.9%	136.07	195.93	221.54	308.94	61.9%
Air	1.24	1.80	2.23	3.25	0.7%	1.47	2.13	2.58	3.73	0.7%
Surface water	8.98	12.60	17.05	25.42	5.6%	10.85	15.67	20.11	29.71	5.6%
Soil	0.26	0.36	0.49	0.74	0.2%	0.31	0.46	0.58	0.86	0.2%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	1.35	2.07	2.29	3.25	0.8%	0.26	0.39	0.44	0.63	0.1%
Incineration	10.66	15.94	18.06	25.70	6.0%	13.75	21.16	23.06	32.50	6.4%
Recycling	44.30	64.15	75.47	107.89	24.9%	53.78	80.48	89.32	125.49	25.0%
Export	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
		Flow	s of TiO ₂ in	Bulgaria			Flow	/s of TiO ₂ in	Croatia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In tor	nnoc				In to	nnes		
То		III (OI	11105				In to	11105		
Waste water	48.75	64.82	101.39	157.25	61.7%	52.19	67.50	105.47	162.48	61.7%
Air	0.63	0.85	1.35	2.12	0.8%	0.68	0.93	1.40	2.18	0.8%
Surface water	3.98	5.51	9.19	14.66	5.6%	4.25	5.95	9.57	15.14	5.6%
Soil	0.11	0.16	0.27	0.43	0.2%	0.12	0.18	0.28	0.44	0.2%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	6.62	8.66	14.07	21.93	8.6%	8.57	11.69	17.60	27.19	10.3%
Incineration	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Recycling	17.87	23.06	38.00	59.27	23.1%	17.73	26.05	36.66	56.71	21.4%
Export	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%

		Flo	ws of TiO₂ i	n Cyprus			Flows of	TiO₂ in Cze	ech Republ	ic
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	onnes				In to	nnes		
То		111 00	511105							
Waste water	32.43	36.39	82.22	134.71	61.6%	108.78	164.12	181.56	257.23	61.7%
Air	0.44	0.56	1.11	1.81	0.8%	1.39	1.98	2.43	3.50	0.8%
Surface water	2.70	3.19	7.46	12.40	5.6%	8.69	13.15	16.45	24.44	5.6%
Soil	0.08	0.11	0.22	0.36	0.2%	0.25	0.36	0.48	0.71	0.2%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	3.53	4.09	9.04	14.91	6.8%	12.19	19.00	20.69	29.48	7.0%
Incineration	0.00	0.00	0.00	0.00	0.0%	3.79	5.83	6.44	9.18	2.2%
Recycling	13.02	14.93	33.35	54.94	25.0%	38.60	60.79	66.04	94.70	22.5%
Export	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
		Flow	s of TiO ₂ in	Denmark			Flow	s of TiO ₂ in	stonia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	onnes				In to	nnec		
То		Inte	511165					ines		
Waste water	75.07	107.21	134.95	198.66	61.8%	26.48	25.23	75.66	126.63	61.6%
Air	0.82	1.14	1.62	2.44	0.7%	0.33	0.33	0.99	1.68	0.8%
Surface water	6.09	8.55	12.31	18.81	5.6%	2.24	2.46	6.85	11.62	5.6%
Soil	0.17	0.25	0.36	0.54	0.2%	0.06	0.08	0.20	0.34	0.2%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	1.57	2.13	2.92	4.34	1.3%	0.51	0.52	1.48	2.49	1.2%
Incineration	8.00	10.89	14.88	22.11	6.8%	3.73	3.74	10.79	18.08	8.8%
Recycling	27.93	39.04	51.33	76.02	23.5%	9.23	9.11	26.82	45.08	21.8%
Export	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%

		Flows	of TiO ₂ in F	inland			Flow	/s of TiO₂ in	France	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnes				In to	onnes	1	
То										
Waste water	70.98	104.85	129.98	192.64	61.9%	482.19	720.17	764.96	1,049.09	28.2%
Air	0.72	0.98	1.49	2.29	0.7%	7.09	10.69	11.49	15.96	0.4%
Surface water	5.75	7.60	11.82	18.19	5.6%	37.84	56.53	69.52	102.05	2.6%
Soil	0.17	0.24	0.34	0.53	0.2%	1.12	1.71	1.99	2.89	0.1%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	2.75	3.67	5.15	7.67	2.5%	26.57	40.81	42.05	57.67	1.6%
Incineration	5.79	8.02	10.86	16.18	5.2%	35.87	54.26	56.74	77.85	2.1%
Recycling	26.86	38.97	50.44	75.33	24.0%	190.21	280.67	297.28	406.22	11.0%
Export	0.00	0.00	0.00	0.00	0.0%	949.06	1,373.80	1,468.85	1,993.02	54.1%
		Flows	of TiO ₂ in G	ermany			Flow	rs of TiO₂ in	Greece	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnoc				In to	onnes		
То		111 10	i iiies				111 (JIIIES		
Waste water	533.42	828.20	848.76	1,165.86	20.3%	121.58	180.10	200.20	280.92	61.8%
Air	11.10	16.41	18.07	25.05	0.4%	1.39	1.99	2.44	3.54	0.8%
Surface water	41.46	61.68	76.61	112.72	1.8%	9.68	13.95	18.16	26.86	5.6%
Soil	1.22	1.79	2.20	3.20	0.1%	0.28	0.41	0.53	0.78	0.2%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.19	0.29	0.31	0.43	0.0%	16.81	24.76	28.42	40.43	8.8%
Incineration	54.39	80.88	87.24	120.31	2.1%	0.06	0.09	0.11	0.16	0.0%
Recycling	221.66	342.69	351.50	482.03	8.4%	43.71	67.69	73.85	105.06	22.8%
Export	1,800.85	2,760.75	2,788.92	3,781.56	66.8%	0.00	0.00	0.00	0.00	0.0%

		Flow	vs of TiO ₂ i	n Hungary			Flo	ows of TiO ₂	in Ireland	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In t	onnes				In t	onnes		
То		111 0	onnes				111 0	onnes		
Waste water	63.40	85.86	119.61	179.70	61.8%	54.48	80.25	106.28	161.15	57.8%
Air	0.74	0.97	1.50	2.30	0.8%	0.54	0.73	1.22	1.93	0.7%
Surface water	5.12	7.13	10.89	16.90	5.6%	4.46	5.88	9.65	15.08	5.2%
Soil	0.15	0.20	0.31	0.49	0.2%	0.13	0.18	0.28	0.44	0.2%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	8.12	10.97	15.68	23.67	8.1%	4.24	5.84	8.44	12.90	4.6%
Incineration	1.50	2.05	2.90	4.37	1.5%	1.97	2.71	3.92	5.98	2.1%
Recycling	22.07	30.43	42.76	64.60	22.1%	21.14	29.51	42.06	64.10	22.9%
Export	0.00	0.00	0.00	0.00	0.0%	6.16	8.60	12.17	18.51	6.6%
		FI	ows of TiO	₂ in Italy			FI	ows of TiO ₂	in Latvia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In t	onnes				In t	onnes		
То			onnes				Inte	onnes		
Waste water	563.57	838.76	866.27	1,170.66	61.9%	29.11	31.93	78.59	130.17	61.7%
Air	6.21	8.96	10.21	14.26	0.7%	0.37	0.40	1.03	1.72	0.8%
Surface water	44.74	65.41	78.87	113.61	5.6%	2.45	2.93	7.13	11.96	5.6%
Soil	1.28	1.96	2.28	3.30	0.2%	0.07	0.08	0.21	0.35	0.2%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	34.74	52.22	55.17	75.73	3.9%	4.55	4.64	12.54	20.75	9.8%
Incineration	34.07	52.91	54.10	74.21	3.9%	0.04	0.04	0.12	0.20	0.1%
Recycling	211.98	321.81	333.59	455.27	23.8%	10.13	10.68	27.84	46.14	21.8%
Export	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%

		Flow	vs of TiO₂ i	in Lithuania	l		Flows o	f TiO ₂ in Lu	uxembourg	J
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	onnes				In to	nnes		
То		in e	511105				111 (01			
Waste water	33.36	35.04	83.59	136.24	61.7%	25.30	24.66	74.19	124.66	61.6%
Air	0.42	0.51	1.09	1.79	0.8%	0.32	0.37	0.97	1.65	0.8%
Surface water	2.79	3.33	7.58	12.58	5.6%	2.14	2.40	6.74	11.49	5.6%
Soil	0.08	0.11	0.22	0.36	0.2%	0.06	0.07	0.20	0.34	0.2%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	4.45	5.09	11.28	18.34	8.3%	0.42	0.44	1.26	2.13	1.0%
Incineration	0.02	0.02	0.05	0.08	0.0%	1.90	1.98	5.67	9.57	4.7%
Recycling	12.44	13.69	31.65	51.64	23.4%	10.59	10.95	31.41	53.06	26.1%
Export	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
		Flo	ows of TiO	2 in Malta			Flows of	TiO ₂ in the	Netherlan	ds
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	onnes				In to	nnoc		
То		111 (0	JIIIES				111 (01	111105		
Waste water	21.59	20.48	69.76	119.37	61.6%	109.81	161.86	172.91	236.53	25.4%
Air	0.29	0.30	0.93	1.60	0.8%	2.07	3.17	3.35	4.65	0.5%
Surface water	1.82	1.86	6.34	11.00	5.6%	8.61	12.15	15.59	22.73	2.3%
Soil	0.05	0.05	0.18	0.32	0.2%	0.25	0.35	0.45	0.66	0.1%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	3.39	3.19	11.14	19.13	9.8%	0.28	0.41	0.45	0.62	0.1%
Incineration	0.01	0.01	0.04	0.07	0.0%	17.75	27.66	28.32	39.02	4.2%
Recycling	7.55	7.50	24.79	42.56	21.9%	37.03	54.71	59.91	83.01	8.8%
Export	0.00	0.00	0.00	0.00	0.0%	257.97	393.01	398.71	540.93	58.7%

		Flow	s of TiO ₂ in	Norway			Flow	s of TiO₂ in	n Poland	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnes				In to	nnes		
То										
Waste water	85.44	126.67	149.54	216.29	61.7%	218.96	336.76	343.21	468.87	51.7%
Air	1.10	1.47	2.00	2.93	0.8%	1.96	3.07	3.38	4.84	0.5%
Surface water	6.88	10.18	13.51	20.43	5.6%	17.30	25.31	31.27	45.48	4.7%
Soil	0.20	0.29	0.39	0.60	0.2%	0.50	0.74	0.91	1.32	0.1%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.25	0.37	0.44	0.65	0.2%	21.97	33.55	35.02	48.24	5.3%
Incineration	8.65	13.32	15.44	22.47	6.4%	5.94	9.20	9.61	13.34	1.4%
Recycling	34.23	51.89	60.93	88.83	25.1%	81.03	122.50	129.37	178.13	19.5%
Export	0.00	0.00	0.00	0.00	0.0%	70.07	101.85	111.25	152.76	16.8%
		Flows	of TiO ₂ in	Portugal			Flows	of TiO ₂ in	Romania	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	nnoc				In to	nnoc		
То		III to	11165				III to	111105		
Waste water	116.96	171.22	194.04	273.28	61.8%	83.05	120.56	145.87	212.69	61.8%
Air	1.52	2.25	2.63	3.75	0.8%	1.02	1.41	1.89	2.79	0.8%
Surface water	9.29	14.23	17.56	26.03	5.6%	6.63	9.99	13.19	20.03	5.6%
Soil	0.27	0.40	0.51	0.76	0.2%	0.19	0.27	0.38	0.58	0.2%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	12.99	19.25	21.97	31.22	7.0%	13.60	18.26	24.34	35.65	10.3%
Incineration	5.41	8.22	9.21	13.10	2.9%	0.15	0.21	0.27	0.39	0.1%
Recycling	39.99	57.22	68.21	97.33	21.7%	27.82	38.53	50.15	73.88	21.2%
Export	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%

		Flows	of TiO ₂ in	the Slovakia			Flow	s of TiO₂ in	Slovenia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In t	onnes				In tor	nac		
То			onnes				In to	11103		
Waste water	86.81	130.05	151.49	219.45	61.7%	36.36	42.80	86.91	140.44	61.7%
Air	1.18	1.74	2.11	3.07	0.9%	0.48	0.62	1.16	1.88	0.8%
Surface water	6.99	9.66	13.70	20.62	5.6%	3.02	3.94	7.86	12.95	5.6%
Soil	0.20	0.29	0.40	0.60	0.2%	0.09	0.11	0.23	0.38	0.2%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	11.13	15.86	19.82	28.95	8.1%	4.60	5.63	11.18	18.11	7.9 %
Incineration	1.87	2.85	3.35	4.89	1.4%	0.02	0.03	0.05	0.08	0.0%
Recycling	30.83	42.55	54.76	79.66	22.3%	13.88	16.81	33.51	54.26	23.8%
Export	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
		Fle	ows of TiO ₂	in Spain			Flow	s of TiO ₂ in	Sweden	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In t	onnes				In tor	2005		
То		1111	onnes				111 101	ines		
Waste water	512.33	756.04	784.53	1,056.03	61.7%	105.66	154.75	177.04	251.81	61.8%
Air	6.41	9.91	10.35	14.34	0.8%	1.33	1.83	2.33	3.37	0.8%
Surface water	40.43	59.60	70.96	102.34	5.6%	8.38	12.21	16.04	23.91	5.6%
Soil	1.16	1.67	2.06	2.99	0.2%	0.24	0.34	0.46	0.70	0.2%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	63.67	92.87	99.04	134.70	7.8%	0.11	0.16	0.19	0.28	0.1%
Incineration	11.20	16.76	17.42	23.69	1.4%	11.50	16.04	20.05	28.93	7.0%
Recycling	182.24	267.76	286.42	391.14	22.5%	41.14	61.44	70.45	101.16	24.6%
Export	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%

		Flows o	of TiO ₂ in S	witzerland		F	lows of TiO	2 in the Un	ited Kingdo	om
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	nnes		
Waste water	97.13	145.31	156.89	217.35	34.5%	554.78	841.54	869.97	1,183.87	28.8%
Air	0.94	1.32	1.67	2.42	0.4%	10.00	14.27	16.09	22.29	0.5%
Surface water	7.71	11.41	14.31	21.13	3.2%	43.58	63.99	78.47	113.91	2.6%
Soil	0.23	0.34	0.41	0.60	0.1%	1.25	1.94	2.27	3.32	0.1%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.00	0.00	0.00	0.00	0.0%	38.00	59.81	60.80	83.77	2.0%
Incineration	6.78	10.41	10.90	15.09	2.4%	29.27	44.56	46.87	64.58	1.6%
Recycling	42.69	64.89	68.45	94.73	15.1%	211.90	310.84	338.20	466.38	11.2%
Export	126.80	193.17	201.57	277.96	44.4%	1,035.64	1,620.00	1,603.17	2,173.92	53.2%

Modelling results – masses of TiO₂ ENM entering technical and environmental compartments (continued)

		Fl	ows of ZnO	in Austria			Flo	ws of ZnO i	n Belgium	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	onnes				In to	nnes		
То		111 (511165				111 (0	11103		
Waste water	2.17	19.27	18.47	34.72	57.2%	2.61	21.56	22.40	42.22	41.6%
Air	0.04	0.36	0.41	0.78	1.3%	0.05	0.45	0.49	0.93	0.9%
Surface water	0.21	1.64	1.98	3.77	6.1%	0.26	2.03	2.39	4.57	4.4%
Soil	0.03	0.22	0.32	0.61	1.0%	0.04	0.29	0.39	0.75	0.7%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.01	0.05	0.05	0.09	0.1%	0.00	0.01	0.01	0.02	0.0%
Incineration	0.04	0.37	0.36	0.67	1.1%	0.04	0.38	0.38	0.72	0.7%
Recycling	0.38	3.17	3.33	6.31	10.3%	0.47	3.84	4.15	7.85	7.7%
Export	0.84	7.37	7.40	13.95	22.9%	2.74	24.90	23.58	44.31	43.8%
		Flo	ows of ZnO i	in Bulgaria	1		Flo	ows of ZnO	in Croatia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In t	onnes				In to	nnes		
То		111 0	JIIIES							
								inico		
Waste water	1.75	11.17	18.41	36.78	74.2%	2.13	13.73	20.42	40.17	74.2%
Waste water Air	1.75 0.03	11.17 0.19	18.41 0.38	36.78 0.76	74.2% 1.5%	2.13 0.04			40.17 0.85	74.2% 1.6%
							13.73	20.42		
Air	0.03	0.19	0.38	0.76	1.5%	0.04	13.73 0.29	20.42 0.43	0.85	1.6%
Air Surface water	0.03 0.17	0.19 0.91	0.38 1.98	0.76 3.97	1.5% 8.0%	0.04 0.21	13.73 0.29 1.14	20.42 0.43 2.19	0.85 4.33	1.6% 8.0%
Air Surface water Soil	0.03 0.17 0.03	0.19 0.91 0.14	0.38 1.98 0.32	0.76 3.97 0.64	1.5% 8.0% 1.3%	0.04 0.21 0.03	13.73 0.29 1.14 0.16	20.42 0.43 2.19 0.35	0.85 4.33 0.70	1.6% 8.0% 1.3%
Air Surface water Soil Landfill - CDW	0.03 0.17 0.03 0.00	0.19 0.91 0.14 0.00	0.38 1.98 0.32 0.00	0.76 3.97 0.64 0.00	1.5% 8.0% 1.3% 0.0%	0.04 0.21 0.03 0.00	13.73 0.29 1.14 0.16 0.00	20.42 0.43 2.19 0.35 0.00	0.85 4.33 0.70 0.00	1.6% 8.0% 1.3% 0.0%
Air Surface water Soil Landfill - CDW Landfill - RW	0.03 0.17 0.03 0.00 0.05	0.19 0.91 0.14 0.00 0.31	0.38 1.98 0.32 0.00 0.55	0.76 3.97 0.64 0.00 1.11	1.5% 8.0% 1.3% 0.0% 2.2%	0.04 0.21 0.03 0.00 0.08	13.73 0.29 1.14 0.16 0.00 0.44	20.42 0.43 2.19 0.35 0.00 0.74	0.85 4.33 0.70 0.00 1.45	1.6% 8.0% 1.3% 0.0% 2.7%

Modelling results – masses of ZnO ENM entering technical and environmental compartments

		Fİ	ows of ZnO	in Cyprus			Flows of ZnO in Czech Republic			
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	onnes				In t	tonnes		
То		111 (511165				111	tonnes		
Waste water	1.50	7.30	16.21	33.01	74.2%	4.15	31.16	35.48	67.11	74.2%
Air	0.03	0.15	0.34	0.70	1.6%	0.08	0.59	0.75	1.44	1.6%
Surface water	0.15	0.68	1.74	3.52	7.9 %	0.41	2.63	3.79	7.29	7.9%
Soil	0.02	0.10	0.28	0.57	1.3%	0.06	0.43	0.61	1.19	1.3%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.04	0.18	0.44	0.89	2.0%	0.16	1.09	1.41	2.69	3.0%
Incineration	0.00	0.00	0.00	0.00	0.0%	0.04	0.29	0.36	0.68	0.7%
Recycling	0.26	1.30	2.85	5.79	13.0%	0.60	4.50	5.40	10.30	11.3%
Export	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
		Flo	ws of ZnO i	n Denmar	k		F	ows of Zn	O in Estonia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	onnes				In f	tonnes		
То			Jines				111	lonnes		
Waste water	2.65	19.49	24.10	46.63	74.2%	0.03	0.18	0.20	0.37	0.3%
Air	0.05	0.28	0.49	0.96	1.5%	0.00	0.01	0.01	0.01	0.0%
Surface water	0.26	1.70	2.58	5.03	8.0%	0.00	0.01	0.02	0.04	0.0%
Soil	0.04	0.23	0.42	0.82	1.3%	0.00	0.00	0.00	0.01	0.0%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.05	0.35	0.51	0.98	1.6%	0.00	0.00	0.00	0.00	0.0%
Incineration	0.02	0.13	0.20	0.39	0.6%	0.00	0.01	0.01	0.01	0.0%
Recycling	0.44	2.82	4.16	8.09	12.8%	0.00	0.02	0.03	0.06	0.0%
Export	0.00	0.00	0.00	0.00	0.0%	9.48	65.44	70.24	131.01	99.6%

		Flo	ws of ZnO ii	n Finland			Flo	ws of ZnO i	n France	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	onnes				In to	onnes		
То		111 (0	511163				Inte	Jiiiles		
Waste water	2.71	16.21	23.40	45.32	74.3%	15.59	131.14	138.25	262.73	26.6%
Air	0.05	0.28	0.48	0.93	1.5%	0.37	2.99	3.40	6.49	0.7%
Surface water	0.27	1.61	2.51	4.90	8.0%	1.55	10.70	14.81	28.49	2.8%
Soil	0.04	0.23	0.40	0.79	1.3%	0.24	1.62	2.34	4.52	0.4%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.01	0.04	0.06	0.12	0.2%	0.19	1.58	1.69	3.21	0.3%
Incineration	0.01	0.08	0.13	0.25	0.4%	0.26	2.17	2.28	4.33	0.4%
Recycling	0.50	2.98	4.53	8.77	14.4%	2.77	22.77	24.37	46.43	4.7%
Export	0.00	0.00	0.00	0.00	0.0%	38.52	315.81	333.46	630.71	64.1%
		Flov	vs of ZnO in	Germany			Flo	ws of ZnO i	n Greece	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	onnes				In to	onnes	0	
То		111 (0	JIIIES				Inte	Junes		
Waste water	15.55	121.89	138.24	260.71	43.7%	4.66	38.59	40.20	76.06	74.3%
Air	0.26	1.93	2.51	4.80	0.8%	0.08	0.57	0.80	1.53	1.5%
Surface water	1.55	11.94	14.90	28.48	4.7%	0.47	3.20	4.31	8.25	8.0%
Soil	0.25	1.78	2.38	4.56	0.8%	0.07	0.43	0.70	1.34	1.3%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.00	0.00	0.00	0.01	0.0%	0.15	1.04	1.27	2.40	2.3%
Incineration	0.26	2.09	2.31	4.36	0.7%	0.00	0.00	0.00	0.00	0.0%
Recycling	2.80	22.66	25.20	47.73	8.0%	0.77	5.06	6.83	13.02	12.6%
Export	14.90	108.89	131.01	246.32	41.4%	0.00	0.00	0.00	0.00	0.0%

		Flow	ws of ZnO in	Hungary			Flo	ows of ZnO	in Ireland	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In te	onnes				In to	nnes		
То		111 (511165				in to	111103		
Waste water	2.17	13.92	21.29	41.76	74.2%	1.75	10.82	16.29	31.90	54.7%
Air	0.04	0.26	0.45	0.88	1.6%	0.03	0.16	0.32	0.64	1.1%
Surface water	0.21	1.32	2.28	4.49	8.0%	0.17	1.08	1.75	3.45	5.9%
Soil	0.03	0.20	0.37	0.73	1.3%	0.03	0.15	0.28	0.55	0.9%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.09	0.58	0.90	1.76	3.1%	0.02	0.10	0.15	0.28	0.5%
Incineration	0.02	0.09	0.16	0.32	0.6%	0.01	0.04	0.07	0.13	0.2%
Recycling	0.32	2.02	3.25	6.37	11.3%	0.32	2.12	3.07	6.04	10.3%
Export	0.00	0.00	0.00	0.00	0.0%	0.85	5.53	7.84	15.30	26.3%
		FI	ows of ZnO	in Italy			Fl	ows of ZnO	in Latvia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	onnes				In to	onnes		
То		111 (511105				in to	inico		
Waste water	19.58	166.73	168.31	317.01	71.9%	1.23	5.56	14.74	30.48	74.2%
Air	0.38	2.70	3.58	6.81	1.5%	0.02	0.10	0.31	0.63	1.5%
Surface water	1.95	13.89	18.03	34.33	7.7%	0.12	0.49	1.58	3.25	7.9%
Soil	0.30	2.10	2.91	5.61	1.2%	0.02	0.07	0.25	0.52	1.3%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.20	1.45	1.73	3.25	0.7%	0.04	0.19	0.53	1.09	2.7%
Incineration	0.19	1.43	1.69	3.18	0.7%	0.00	0.00	0.00	0.01	0.0%
Recycling	3.45	26.10	30.73	58.09	13.1%	0.20	0.84	2.45	5.08	12.3%
	0.79	6.56	7.01	13.21	3.0%	0.00	0.00	0.00	0.00	0.0%

		Flo	ws of ZnO i	n Lithuani	а		Flows	of ZnO in L	uxembourg	I
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	onnes				In to	onnes		
То		in e	511165				in co	, mico		
Waste water	1.32	6.37	15.53	31.89	74.2%	0.98	3.89	13.75	28.96	74.1%
Air	0.03	0.12	0.32	0.66	1.6%	0.02	0.07	0.29	0.60	1.5%
Surface water	0.13	0.57	1.67	3.41	8.0%	0.10	0.37	1.48	3.09	8.0%
Soil	0.02	0.09	0.27	0.55	1.3%	0.02	0.05	0.24	0.50	1.3%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.04	0.20	0.53	1.08	2.5%	0.00	0.01	0.03	0.06	0.2%
Incineration	0.00	0.00	0.00	0.00	0.0%	0.01	0.03	0.12	0.26	0.7%
Recycling	0.21	0.99	2.62	5.34	12.5%	0.18	0.68	2.64	5.55	14.2%
Export	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
		F	lows of ZnO) in Malta			Flows o	f ZnO in the	Netherlan	ds
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In t	onnes				In to	onnes		
То		111 (0	511165				In to	Junes		
Waste water	0.96	3.27	13.42	28.36	74.2%	2.78	24.14	24.72	46.79	15.7%
Air	0.02	0.06	0.28	0.59	1.6%	0.06	0.42	0.53	1.02	0.3%
Surface water	0.10	0.35	1.44	3.03	8.0%	0.28	2.03	2.65	5.07	1.7%
Soil	0.01	0.05	0.23	0.48	1.3%	0.04	0.30	0.43	0.83	0.3%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.04	0.15	0.60	1.26	3.3%	0.00	0.01	0.01	0.02	0.0%
Incineration	0.00	0.00	0.00	0.00	0.0%	0.06	0.46	0.54	1.02	0.3%
Recycling	0.15	0.53	2.13	4.47	11.8%	0.49	4.36	4.46	8.47	2.8%
Export	0.00	0.00	0.00	0.00	0.0%	14.37	124.71	124.34	234.03	78.9%

		Fle	ows of ZnO	in Norway	7		F	lows of Zn	O in Poland	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In t	onnes				Int	tonnes		
То		in o	Jines				111	tonnes		
Waste water	2.84	18.78	25.94	50.09	74.2%	7.00	53.21	61.90	116.98	52.4%
Air	0.06	0.35	0.55	1.07	1.6%	0.12	0.81	1.11	2.14	0.9%
Surface water	0.28	1.82	2.78	5.39	7.9%	0.71	5.21	6.67	12.78	5.6%
Soil	0.04	0.24	0.45	0.88	1.3%	0.11	0.83	1.07	2.05	0.9%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.00	0.01	0.02	0.04	0.1%	0.19	1.52	1.75	3.32	1.5%
Incineration	0.08	0.51	0.72	1.39	2.1%	0.01	0.10	0.12	0.23	0.1%
Recycling	0.48	3.00	4.51	8.72	12.9%	1.15	8.60	10.47	19.82	8.9%
Export	0.00	0.00	0.00	0.00	0.0%	3.97	33.13	35.11	66.47	29.7%
		Flo	ows of ZnO i	in Portuga	<u> </u>		Fle	ows of ZnC) in Romania	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In t	onnes				Int	tonnes		
То		111 0	511165				111	tonnes		
Waste water	2.11	15.06	16.42	30.80	39.4%	2.58	17.58	23.56	45.69	74.2%
Air	0.05	0.26	0.38	0.71	0.9%	0.05	0.33	0.49	0.96	1.5%
Surface water	0.21	1.31	1.75	3.33	4.2%	0.26	1.48	2.52	4.92	7.9%
Soil	0.03	0.20	0.28	0.54	0.7%	0.04	0.24	0.41	0.80	1.3%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
	0.07	0.45	0.58	1.09	1.4%	0.11	0.74	1.09	2.11	3.4%
Landfill - RW	0.07									
Landfill - RW Incineration	0.03	0.20	0.24	0.45	0.6%	0.00	0.00	0.01	0.01	0.0%
		0.20 1.84	0.24 2.50	0.45 4.73	0.6% 6.0%	0.00 0.38	0.00 2.60	0.01 3.67	0.01 7.14	0.0% 11.6%

	Flows of ZnO in the Slovakia Flows of ZnO in the Slovakia Q15 Mode Mean Q85 Mean TC Q15 Mode Mean Q85						in Slovenia	Ì		
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In to	onnes				In to	onnes		
То		111 0	511105					inico		
Waste water	3.36	27.87	31.50	60.27	74.1%	1.47	8.16	16.47	33.57	74.1%
Air	0.07	0.47	0.68	1.32	1.6%	0.03	0.16	0.35	0.71	1.6%
Surface water	0.33	2.70	3.37	6.51	7.9 %	0.15	0.73	1.77	3.60	8.0%
Soil	0.05	0.35	0.55	1.06	1.3%	0.02	0.11	0.28	0.58	1.3%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.09	0.79	0.91	1.74	2.1%	0.03	0.15	0.33	0.67	1.5%
Incineration	0.02	0.13	0.15	0.28	0.3%	0.00	0.00	0.00	0.00	0.0%
Recycling	0.55	4.34	5.33	10.27	12.5%	0.26	1.31	3.01	6.11	13.6%
Export	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
		Fle	ows of ZnO	in Spain			Flo	ws of ZnO	in Sweden	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
		In t	onnes				In to	onnes		
То		111 0	Jilles				III to	nines		
Waste water	16.56	134.95	152.27	288.36	62.6%	3.29	26.23	30.29	57.91	74.2%
Air	0.33	2.80	3.31	6.34	1.4%	0.06	0.44	0.64	1.23	1.6%
Surface water	1.64	12.56	16.23	31.06	6.7%	0.33	2.17	3.24	6.26	7.9%
Soil	0.25	1.94	2.63	5.08	1.1%	0.05	0.31	0.52	1.02	1.3%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.69	5.58	6.47	12.31	2.7%	0.00	0.00	0.00	0.00	0.0%
Incineration	0.12	1.02	1.11	2.11	0.5%	0.04	0.27	0.34	0.66	0.8%
Recycling	2.41	19.09	23.27	44.31	9.6%	0.61	4.48	5.78	11.07	14.2%
Export	4.00	33.98	38.12	72.20	15.7%	0.00	0.00	0.00	0.00	0.0%

		Flow	vs of ZnO in	Switzerla	nd		Flows of Z	ZnO in the U	Jnited King	dom
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	onnes				In to	onnes		
Waste water	2.79	24.48	23.99	45.40	34.2%	18.50	156.52	155.38	294.07	22.4%
Air	0.05	0.30	0.45	0.87	0.6%	0.38	2.83	3.38	6.42	0.5%
Surface water	0.28	1.83	2.58	4.94	3.7%	1.83	12.02	16.68	31.84	2.4%
Soil	0.04	0.29	0.41	0.79	0.6%	0.28	2.08	2.68	5.16	0.4%
Landfill - CDW	0.00	0.00	0.00	0.00	0.0%	0.00	0.00	0.00	0.00	0.0%
Landfill - RW	0.00	0.00	0.00	0.00	0.0%	0.31	2.51	2.72	5.13	0.4%
Incineration	0.03	0.24	0.27	0.51	0.4%	0.24	1.88	2.03	3.82	0.3%
Recycling	0.52	4.39	4.51	8.55	6.4%	3.10	22.81	26.75	50.65	3.9%
Export	4.44	32.27	37.88	71.53	54.0%	58.87	493.26	484.16	909.56	69.8 %

Modelling results – masses of ZnO ENM entering technical and environmental compartments (continued)

		Flow	s of CB in Au	stria			Flows	of CB in Bel	gium	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	nnes		
Landfill -										
RW	316.30	402.92	429.31	544.65	0.66%	201.90	238.36	251.90	303.25	0.66%
Incineration	12,573.34	15,275.30	17,335.67	22,218.58	26.53%	7,958.81	9,466.94	10,156.46	12,394.42	26.56%
Recycling	37,265.17	48,332.07	47,572.17	57,896.78	72.81%	25,063.72	27,796.68	27,838.37	30,602.38	72.79%
		Flows	of CB in Bul	garia			Flows	s of CB in Cro	oatia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	nnes		
Landfill -										
RW	5,151.54	7,261.51	9,483.48	13,789.20	29.97%	286.58	345.62	387.16	489.78	29.78%
Incineration	0.56	0.74	1.11	1.67	0.00%	0.00	0.00	0.00	0.00	0.00%
Recycling	12,431.77	18,912.86	22,156.27	31,778.79	70.02%	736.25	877.25	912.69	1,091.66	70.22%
		Flow	s of CB in Cy	prus			Flows of	CB in Czech	Republic	
То		In to	nnes				In to	nnes		
Landfill -										
RW	2,275.24	1,901.08	5,810.31	9,288.84	24.81%	6,121.69	7,405.04	7,502.18	8,873.49	21.72%
Incineration	0.00	0.00	0.00	0.00	0.00%	1,535.28	1,903.51	1,882.57	2,228.14	5.45%
Recycling	7,174.32	6,213.58	17,605.16	27,861.23	75.19%	20,563.98	25,048.33	25,153.00	29,669.04	72.83%
		Flows	of CB in Den	mark			Flows	s of CB in Est	onia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	nnes		
Landfill -										
RW	163.38	215.78	246.75	331.05	0.53%	340.78	444.75	839.44	1,328.00	3.50%
Incineration	8,934.59	11,827.52	13,394.76	17,930.50	28.72%	2,499.47	2,694.23	6,128.15	9,682.55	25.55%
Recycling	23,048.72	35,551.58	32,992.11	42,783.53	70.75%	7,121.21	22,244.49	17,015.62	26,726.90	70.95%

Appendix 7: Modelling results – Fractions of carbon black ENM entering landfilling, incineration and recycling

		Flows	s of CB in Finla	and			Flows	s of CB in Fra	nce	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	nnes		
Landfill -										
RW	2,635.34	3,352.55	4,029.92	5,454.33	9.07%	23,610.82	28,696.24	30,364.84	37,216.96	11.96%
Incineration	5,509.57	7,025.20	8,434.25	11,407.76	18.99%	31,663.07	38,415.17	40,660.77	49,796.26	16.01%
Recycling	21,870.32	26,848.70	31,953.26	41,941.07	71.94%	162,051.76	184,109.48	182,905.36	203,563.07	72.03%
		Flows	of CB in Gern	nany			Flows	s of CB in Gre	ece	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	nnes		
Landfill -										
RW	290.48	351.41	366.09	441.93	0.11%	11,853.37	15,154.92	16,847.14	21,959.88	30.94%
Incineration	71,995.30	86,863.41	89,673.53	107,385.14	26.53%	0.00	0.00	0.00	0.00	0.00%
Recycling	218,668.42	249,228.29	248,011.62	277,201.13	73.37%	27,874.99	34,847.25	37,609.55	47,380.27	69.06%
		Flows	of CB in Hung	gary			Flows	of CB in Irel	and	
То		In to	nnes				In to	nnes		
Landfill -										
RW	4,478.33	5,427.87	5,500.78	6,510.88	23.12%	4,194.70	5,316.80	7,021.60	9,858.68	19.14%
Incineration	790.37	977.57	979.78	1,167.30	4.12%	1,920.31	2,649.51	3,221.50	4,533.27	8.78%
Recycling	14,136.68	17,463.06	17,315.16	20,442.97	72.77%	16,410.91	28,597.65	26,451.60	36,349.98	72.09 %
		Flov	vs of CB in Ita	ly			Flow	s of CB in Lat	via	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	nnes		
Landfill -										
RW	24,137.90	29,132.80	30,990.87	37,947.71	14.46%	3,288.66	3,575.03	7,387.74	11,424.12	28.76%
Incineration	23,442.28	28,354.46	30,070.95	36,820.43	14.03%	19.69	22.86	44.38	68.71	0.17%
Recycling	135,255.16	153,278.76	153,209.69	171,183.74	71.50%	8,364.36	24,619.04	18,256.63	28,018.62	71.07%

		Flows	of CB in Lith	uania			Flows o	f CB in Luxen	nbourg	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	nnes		
Landfill -										
RW	4,065.39	6,351.20	8,435.24	12,709.59	30.47%	799.48	1,365.33	1,504.90	2,211.26	4.88%
Incineration	0.00	0.00	0.00	0.00	0.00%	3,575.73	5,881.23	6,701.85	9,838.02	21.71%
Recycling	9,565.64	17,879.37	19,244.19	28,761.92	69.53%	12,546.44	16,957.93	22,660.20	32,678.25	73.41%
		Flow	s of CB in Ma	alta			Flows of (CB in the Net	herlands	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	nnes		
Landfill -										
RW	2,056.63	6,028.47	6,242.81	10,307.87	29.87%	51.18	63.65	69.53	88.24	0.46%
Incineration	0.00	0.00	0.00	0.00	0.00%	3,172.87	3,924.77	4,266.42	5,383.85	27.92%
Recycling	4,941.60	21,980.44	14,659.46	24,240.04	70.13%	8,950.70	10,692.97	10,942.97	12,930.74	71.62%
		Flows	of CB in Nor	rway			Flow	s of CB in Pol	and	
То		In to	nnes				In to	nnes		
Landfill -										
RW	227.45	284.16	345.08	465.84	0.74%	19,081.85	23,066.39	23,303.20	27,538.30	22.38%
Incineration	7,936.65	10,141.64	11,954.74	16,060.13	25.51%	5,455.77	6,566.41	6,718.89	7,988.29	6.45%
Recycling	24,228.58	23,798.71	34,565.07	44,777.91	73.75%	64,235.77	75,178.55	74,117.53	83,792.86	71.17%
		Flows	of CB in Port	tugal			Flows	of CB in Ron	nania	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	nnes		
Landfill -										
RW	6,326.42	7,620.42	7,651.48	8,969.41	21.07%	6,067.68	7,381.15	7,475.14	8,871.20	26.98%
Incineration	2,605.49	3,128.27	3,169.20	3,732.83	8.73%	47.93	59.33	59.93	71.88	0.22%
Recycling	21,216.39	25,781.42	25,487.04	29,660.71	70.20%	16,488.21	20,233.38	20,172.32	23,812.19	72.80%

		Flows o	f CB in the Sl	ovakia	-		Flows	of CB in Slov	venia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	onnes		
Landfill -										
RW	2,540.33	2,969.44	3,217.96	3,916.95	25.87%	3,092.15	5,715.94	7,210.31	11,251.94	28.94%
Incineration	413.06	490.07	527.84	646.17	4.24%	0.00	0.00	0.00	0.00	0.00%
Recycling	7,698.62	8,659.45	8,693.72	9,686.62	69.89%	7,821.04	20,272.50	17,702.41	27,414.54	71.06%
		Flow	s of CB in Sp	ain			Flow	s of CB in Sw	eden	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	onnes		
Landfill -										
RW	36,649.79	44,933.94	46,043.15	55,607.64	23.85%	31.00	38.00	41.90	53.04	0.28%
Incineration	6,233.70	7,540.46	7,896.36	9,597.58	4.09%	3,093.47	3,848.91	4,129.12	5,184.72	27.54%
Recycling	128,146.46	140,340.57	139,140.28	150,071.09	72.06%	8,984.35	10,500.37	10,821.68	12,664.84	72.18%
		Flows o	f CB in Switz	erland			Flows of CE	B in the Unite	d Kingdom	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	onnes		
Landfill -										
RW	0.00	0.00	0.00	0.00	0.00%	42,955.57	50,200.93	50,807.74	58,714.52	25.17%
Incineration	9,597.67	11,768.32	12,639.20	15,730.69	24.53%	32,992.66	38,090.12	39,046.54	45,164.55	19.34%
Recycling	31,696.42	36,891.92	38,883.27	46,324.49	75.47%	98,222.38	110,113.93	111,992.52	125,822.31	55.48%

		Fl	ows of Cu in	Austria			Flows of Cu in Belgiun			I
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.00	0.00	0.00	0.00	0.47%	0.00	0.00	0.00	0.00	0.13%
Incineration	0.01	0.01	0.02	0.02	3.70%	0.02	0.02	0.02	0.03	6.69%
Recycling	0.30	0.40	0.40	0.51	95.83%	0.25	0.33	0.34	0.44	93.18%
		Flo	ows of Cu in	Bulgaria			Flo	ows of Cu ir	n Croatia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.01	0.01	0.01	0.01	16.82%	0.06	0.06	0.13	0.20	34.03%
Incineration	0.00	0.00	0.00	0.00	0.00%	0.00	0.00	0.00	0.00	0.00%
Recycling	0.03	0.04	0.05	0.06	83.18%	0.11	0.15	0.24	0.38	65.97%
		FI	ows of Cu ir	Cyprus			Flows	of Cu in Cz	ech Repu	blic
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.00	0.01	0.01	0.01	33.84%	0.05	0.06	0.08	0.11	13.37%
Incineration	0.00	0.00	0.00	0.00	0.00%	0.01	0.02	0.02	0.03	3.37%
Recycling	0.01	0.01	0.01	0.02	66.16%	0.31	0.38	0.49	0.68	83.26%
		Flo	ws of Cu in	Denmark	[Flo	ows of Cu ir	n Estonia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.00	0.00	0.00	0.00	0.39%	0.00	0.00	0.01	0.02	4.10%
Incineration	0.03	0.04	0.05	0.06	13.00%	0.03	0.03	0.07	0.12	29.90%
Recycling	0.21	0.28	0.31	0.42	86.60%	0.06	0.07	0.16	0.27	66.00%

		Flo	ows of Cu ir	n Finland			Fle	ows of Cu i	n France	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.00	0.00	0.00	0.00	1.35%	0.08	0.11	0.12	0.16	2.73%
Incineration	0.00	0.01	0.01	0.01	2.83%	0.11	0.14	0.17	0.22	3.67%
Recycling	0.16	0.20	0.21	0.27	95.82%	3.18	4.18	4.22	5.26	93.60%
		Flo	ws of Cu in	German	y		Fle	ows of Cu i	n Greece	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.00	0.00	0.00	0.00	0.03%	0.04	0.06	0.08	0.11	12.39%
Incineration	0.21	0.26	0.29	0.37	7.93%	0.00	0.00	0.00	0.00	0.00%
Recycling	2.52	3.16	3.35	4.18	92.04%	0.34	0.41	0.53	0.73	87.61%
		Flo	ws of Cu in	Hungary	/		Flo	ows of Cu ii	n Ireland	
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.03	0.04	0.06	0.09	13.45%	0.02	0.03	0.03	0.05	7.05%
Incineration	0.01	0.01	0.01	0.02	2.44%	0.01	0.01	0.01	0.02	3.23%
Recycling	0.21	0.27	0.36	0.53	84.11%	0.21	0.32	0.40	0.58	89.72%
		F	lows of Cu	in Italy	-		FI	ows of Cu i	n Latvia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.21	0.28	0.30	0.38	7.49%	0.04	0.07	0.10	0.17	33.75%
Incineration	0.21	0.28	0.29	0.37	7.28%	0.00	0.00	0.00	0.00	0.21%
Recycling	2.56	3.26	3.37	4.19	85.23%	0.08	0.11	0.20	0.33	66.04%

		Flo	ws of Cu in	Lithuania	a		Flows	s of Cu in Lu	uxembou	ırg
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.01	0.02	0.02	0.04	7.45%	0.00	0.00	0.00	0.01	1.49%
Incineration	0.00	0.00	0.00	0.00	0.00%	0.01	0.01	0.02	0.03	6.64%
Recycling	0.13	0.28	0.31	0.49	92.55%	0.11	0.15	0.29	0.47	91.88%
		FI	lows of Cu i	n Malta			Flows d	of Cu in the	Netherla	ands
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.02	0.07	0.08	0.14	29.21%	0.00	0.00	0.00	0.00	0.31%
Incineration	0.00	0.00	0.00	0.00	0.00%	0.13	0.17	0.19	0.25	18.96 %
Recycling	0.06	0.18	0.20	0.33	70.79%	0.57	0.74	0.80	1.03	80.73%
		Flo	ows of Cu in	Norway			Fle	ows of Cu ii	n Poland	
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.00	0.00	0.00	0.00	0.20%	0.07	0.09	0.10	0.14	13.25%
Incineration	0.03	0.04	0.05	0.06	6.96%	0.02	0.03	0.03	0.04	3.77%
Recycling	0.41	0.53	0.63	0.84	92.84%	0.48	0.65	0.65	0.83	82.98%
		Flo	ws of Cu in	Portuga	I		Flo	ws of Cu in	Romania	a
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.04	0.05	0.07	0.09	11.88%	0.20	0.26	0.32	0.45	51.45%
Incineration	0.02	0.02	0.03	0.04	4.93%	0.00	0.00	0.00	0.00	0.40%
Recycling	0.29	0.36	0.46	0.63	83.20%	0.19	0.24	0.30	0.42	48.15%

		Flow	s of Cu in th	ne Slovak	ia		Flo	ws of Cu in	Slovenia	l
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In ton	nes				In tor	nnes		
Landfill -										
RW	0.06	0.08	0.12	0.19	29.15%	0.02	0.03	0.04	0.07	12.76%
Incineration	0.01	0.01	0.02	0.03	4.82%	0.00	0.00	0.00	0.00	0.00%
Recycling	0.15	0.18	0.28	0.42	66.03%	0.12	0.18	0.29	0.46	87.24%
		F	lows of Cu i	n Spain			Flo	ows of Cu in	Sweden	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In ton	nes				In tor	nnes		
Landfill -										
RW	0.17	0.23	0.24	0.31	14.05%	0.00	0.00	0.00	0.00	0.07%
Incineration	0.03	0.04	0.04	0.05	2.40%	0.02	0.03	0.03	0.04	6.82%
Recycling	1.06	1.36	1.41	1.76	83.55%	0.33	0.43	0.45	0.57	93.11%
		Flow	s of Cu in S	witzerlan	d		Flows of	Cu in the U	nited Kin	gdom
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In ton	nes				In tor	nnes		
Landfill -										
RW	0.00	0.00	0.00	0.00	0.00%	0.29	0.37	0.40	0.52	6.42%
Incineration	0.04	0.06	0.06	0.08	6.83%	0.22	0.29	0.31	0.39	4.92%
Recycling	0.61	0.81	0.83	1.07	93.17%	4.22	5.35	5.56	6.90	88.66%

		Flo	ows of Ag ii	n Austria			Flo	ws of Ag in	Belgium	1
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.02	0.03	0.03	0.04	5.35%	0.01	0.01	0.01	0.01	2.44%
Incineration	0.11	0.13	0.15	0.19	27.90%	0.08	0.09	0.10	0.12	22.94%
Recycling	0.25	0.30	0.35	0.46	66.75%	0.25	0.30	0.32	0.38	74.63%
		Flo	ws of Ag in	Bulgaria	1		Flo	ows of Ag i	n Croatia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.09	0.13	0.15	0.21	45.63%	0.09	0.14	0.17	0.24	59.88%
Incineration	0.00	0.01	0.01	0.01	2.77%	0.00	0.01	0.01	0.01	2.77%
Recycling	0.10	0.16	0.17	0.23	51.60%	0.06	0.08	0.11	0.16	37.35%
		Fle	ows of Ag i	n Cyprus			Flows	of Ag in Cz	ech Repu	blic
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.04	0.10	0.11	0.18	55.92%	0.08	0.11	0.12	0.15	25.00%
Incineration	0.00	0.00	0.01	0.01	2.74%	0.08	0.10	0.12	0.15	24.58%
Recycling	0.03	0.08	0.08	0.13	41.34%	0.16	0.21	0.24	0.31	50.43%
		Flo	ws of Ag in	Denmar	k		Flo	ows of Ag i	n Estonia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.01	0.01	0.01	0.02	3.83%	0.01	0.02	0.02	0.03	9.01%
Incineration	0.08	0.11	0.12	0.15	31.46%	0.05	0.13	0.11	0.18	53.26%
Recycling	0.17	0.22	0.25	0.32	64.71%	0.03	0.03	0.08	0.13	37.73%

Modelling results – Fractions of silver ENM entering landfilling, incineration and recycling

		Flo	ows of Ag in	n Finland			Fle	ows of Ag i	n France	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	ines		
Landfill -										
RW	0.03	0.04	0.04	0.05	10.91%	0.30	0.36	0.36	0.43	15.58%
Incineration	0.05	0.06	0.08	0.10	21.20%	0.40	0.47	0.49	0.58	20.84%
Recycling	0.16	0.22	0.25	0.34	67.89%	1.19	1.48	1.48	1.78	63.58%
		Flo	ws of Ag in	German	y		Flo	ows of Ag i	n Greece	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	ines		
Landfill -										
RW	0.05	0.06	0.07	0.09	2.14%	0.15	0.19	0.21	0.27	43.10%
Incineration	0.58	0.69	0.71	0.84	23.23%	0.01	0.01	0.01	0.02	2.81%
Recycling	1.84	2.23	2.28	2.71	74.63%	0.18	0.23	0.26	0.34	54.08%
		Flo	ws of Ag in	Hungary	/		Flo	ows of Ag i	n Ireland	
То		In tor	nnes				In tor	nes		
Landfill -										
RW	0.11	0.13	0.16	0.21	38.94%	0.06	0.08	0.08	0.11	22.60%
Incineration	0.03	0.03	0.04	0.05	9.44%	0.06	0.07	0.08	0.11	22.72%
Recycling	0.14	0.16	0.21	0.28	51.63%	0.14	0.17	0.20	0.27	54.67%
		F	lows of Ag	in Italy	-		Fl	ows of Ag i	in Latvia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	ines		
Landfill -										
RW	0.41	0.48	0.50	0.58	23.45%	0.06	0.08	0.13	0.21	58.86%
Incineration	0.41	0.49	0.50	0.59	23.55%	0.00	0.01	0.01	0.01	3.10%
Recycling	0.89	1.10	1.13	1.36	53.00%	0.04	0.04	0.09	0.14	38.04%

		Flor	ws of Ag in	Lithuani	а		Flows	s of Ag in L	uxembou	ırg
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.05	0.05	0.09	0.14	37.30%	0.01	0.01	0.02	0.02	7.05%
Incineration	0.00	0.00	0.01	0.01	2.77%	0.02	0.03	0.05	0.08	24.89%
Recycling	0.07	0.08	0.15	0.23	59.93%	0.06	0.08	0.15	0.23	68.06%
		FI	lows of Ag i	in Malta			Flows of	of Ag in the	Netherl	ands
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.02	0.04	0.07	0.12	37.87%	0.02	0.02	0.02	0.03	2.68%
Incineration	0.00	0.00	0.01	0.01	2.73%	0.30	0.35	0.37	0.44	45.89%
Recycling	0.04	0.06	0.11	0.19	59.40%	0.32	0.39	0.41	0.51	51.43%
		Flo	ows of Ag in	Norway			Fle	ows of Ag i	n Poland	
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.01	0.01	0.01	0.02	2.95%	0.17	0.21	0.22	0.27	33.46%
Incineration	0.10	0.12	0.13	0.17	29.56%	0.06	0.07	0.08	0.09	11.44%
Recycling	0.21	0.27	0.30	0.40	67.48%	0.28	0.34	0.36	0.45	55.09%
		Flo	ws of Ag in	Portuga	I		Flo	ws of Ag in	Romania	a
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.11	0.15	0.15	0.20	34.97%	0.32	0.39	0.43	0.54	74.24%
Incineration	0.05	0.06	0.07	0.09	16.43%	0.01	0.02	0.02	0.03	3.35%
Recycling	0.14	0.19	0.21	0.28	48.60%	0.09	0.12	0.13	0.17	22.41%

		Flow	s of Ag in tl	he Slova	cia		Flo	ws of Ag in	Slovenia	a
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.10	0.11	0.17	0.23	50.78%	0.05	0.09	0.10	0.15	41.08%
Incineration	0.02	0.03	0.04	0.05	10.78%	0.00	0.00	0.01	0.01	2.76%
Recycling	0.07	0.10	0.13	0.18	38.43%	0.06	0.10	0.13	0.21	56.15%
		FI	lows of Ag i	in Spain			Flo	ws of Ag in	n Sweden	l
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.57	0.68	0.70	0.82	41.81%	0.01	0.01	0.01	0.02	2.49%
Incineration	0.13	0.16	0.16	0.19	9.71%	0.15	0.18	0.20	0.25	33.21%
Recycling	0.64	0.76	0.81	0.98	48.48%	0.28	0.33	0.38	0.48	64.30%
		Flow	s of Ag in S	witzerla	nd		Flows of	Ag in the U	nited Kir	ngdom
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In tor	nnes		
Landfill -										
RW	0.01	0.01	0.01	0.02	2.19%	0.55	0.65	0.67	0.79	25.74%
Incineration	0.14	0.16	0.17	0.21	31.28%	0.45	0.53	0.54	0.64	20.95%
Recycling	0.28	0.35	0.37	0.46	66.53%	1.10	1.33	1.38	1.67	53.30%

		Flo	ws of TiO ₂	in Austria			Flo	ws of TiO ₂	in Belgium	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	onnes				In to	onnes		
Landfill -										
RW	1.35	2.07	2.29	3.25	2.39%	0.26	0.39	0.44	0.63	0.39%
Incineration	10.66	15.94	18.06	25.70	18.85%	13.75	21.16	23.06	32.50	20.44%
Recycling	44.30	64.15	75.47	107.89	78.77%	53.78	80.48	89.32	125.49	79.17%
		Flor	ws of TiO ₂	in Bulgaria			Flo	ws of TiO ₂	in Croatia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	onnes				In to	onnes		
Landfill -										
RW	6.62	8.66	14.07	21.93	27.02%	8.57	11.69	17.60	27.19	32.44%
Incineration	0.00	0.00	0.00	0.00	0.00%	0.00	0.00	0.00	0.00	0.00%
Recycling	17.87	23.06	38.00	59.27	72.98%	17.73	26.05	36.66	56.71	67.56%
		Flo	ws of TiO ₂	in Cyprus			Flows	of TiO ₂ in (Czech Repub	lic
То		In to	onnes				In to	onnes		
Landfill -										
RW	3.53	4.09	9.04	14.91	21.33%	12.19	19.00	20.69	29.48	22.21%
Incineration	0.00	0.00	0.00	0.00	0.00%	3.79	5.83	6.44	9.18	6.91%
Recycling	13.02	14.93	33.35	54.94	78.67%	38.60	60.79	66.04	94.70	70.88%
		Flov	vs of TiO ₂ i	in Denmark			Flo	ws of TiO ₂	in Estonia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	onnes				In to	onnes		
Landfill -										
RW	1.57	2.13	2.92	4.34	4.23%	0.35	0.43	0.86	1.40	3.86%
Incineration	8.00	10.89	14.88	22.11	21.52%	2.56	3.12	6.29	10.22	28.16%
Recycling	27.93	39.04	51.33	76.02	74.25%	6.21	7.62	15.18	24.61	67.98%

Modelling results – Fractions of TiO₂ ENM entering landfilling, incineration and recycling

		Flow	/s of TiO₂ in	Finland			Flov	vs of TiO₂ iı	n France	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	nnes		
Landfill -										
RW	2.29	3.36	3.88	5.51	7.84%	26.57	40.81	42.05	57.67	10.62%
Incineration	4.82	7.03	8.18	11.64	16.54%	35.87	54.26	56.74	77.85	14.33%
Recycling	22.08	31.52	37.41	53.03	75.61%	190.21	280.67	297.28	406.22	75.06%
		Flows	s of TiO ₂ in	Germany			Flow	vs of TiO ₂ in	n Greece	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	nnes		
Landfill -										
RW	0.19	0.29	0.31	0.43	0.07%	16.81	24.76	28.42	40.43	27.76%
Incineration	54.39	80.88	87.24	120.31	19.87%	0.06	0.09	0.11	0.16	0.11%
Recycling	221.66	342.69	351.50	482.03	80.06%	43.71	67.69	73.85	105.06	72.13%
		Flows	s of TiO ₂ in	Hungary			Flow	/s of TiO₂ ir	Ireland	
То		In to	nnes				In to	nnes		
Landfill -										
RW	8.12	10.97	15.68	23.67	25.57%	4.24	5.84	8.44	12.90	15.51%
Incineration	1.50	2.05	2.90	4.37	4.72%	1.97	2.71	3.92	5.98	7.20%
Recycling	22.07	30.43	42.76	64.60	69.71%	21.14	29.51	42.06	64.10	77.28%
		Flo	ws of TiO ₂	in Italy			Flow	ws of TiO ₂ i	n Latvia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	nnes		
Landfill -										
RW	34.74	52.22	55.17	75.73	12.46%	4.55	4.64	12.54	20.75	30.97%
Incineration	34.07	52.91	54.10	74.21	12.22%	0.04	0.04	0.12	0.20	0.29%
Recycling	211.98	321.81	333.59	455.27	75.33%	10.13	10.68	27.84	46.14	68.74%

		Flow	s of TiO ₂ in	Lithuania	l		Flows	of TiO₂ in L	uxembourg	1
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	onnes		
Landfill -										
RW	4.45	5.09	11.28	18.34	26.24%	0.42	0.44	1.26	2.13	3.30%
Incineration	0.02	0.02	0.05	0.08	0.11%	1.90	1.98	5.67	9.57	14.79%
Recycling	12.44	13.69	31.65	51.64	73.65%	10.59	10.95	31.41	53.06	81.91%
		Flo	ws of TiO ₂	in Malta			Flows of	f TiO ₂ in the	e Netherlan	ds
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	onnes		
Landfill -										
RW	3.39	3.19	11.14	19.13	30.98%	0.28	0.41	0.45	0.62	0.51%
Incineration	0.01	0.01	0.04	0.07	0.11%	17.75	27.66	28.32	39.02	31.94%
Recycling	7.55	7.50	24.79	42.56	68.91%	37.03	54.71	59.91	83.01	67.55%
		Flow	vs of TiO ₂ i	n Norway	_		Flo	ws of TiO ₂ i	n Poland	
То		In to	nnes				In to	onnes		
Landfill -										
RW	0.25	0.37	0.44	0.65	0.58%	21.97	33.55	35.02	48.24	20.12%
Incineration	8.65	13.32	15.44	22.47	20.10%	5.94	9.20	9.61	13.34	5.52%
Recycling	34.23	51.89	60.93	88.83	79.32%	81.03	122.50	129.37	178.13	74.35%
		Flow	vs of TiO ₂ in	n Portugal			Flow	vs of TiO ₂ in	Romania	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	onnes		
Landfill -										
RW	12.99	19.25	21.97	31.22	22.11%	11.41	16.29	19.05	26.77	32.87%
Incineration	5.41	8.22	9.21	13.10	9.27%	0.12	0.18	0.21	0.30	0.36%
Recycling	39.99	57.22	68.21	97.33	68.62%	23.08	34.28	38.70	54.55	66.77%

		Flows	of TiO₂ in th	e Slovakia			Flow	s of TiO ₂ in	Slovenia	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	nnes		
Landfill -										
RW	11.13	15.86	19.82	28.95	25.43%	4.60	5.63	11.18	18.11	25.00%
Incineration	1.87	2.85	3.35	4.89	4.30%	0.02	0.03	0.05	0.08	0.11%
Recycling	30.83	42.55	54.76	79.66	70.27%	13.88	16.81	33.51	54.26	74.89%
	Flows of TiO2 in Spain Flows of TiO2 in Swed					Sweden				
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	nnes		
Landfill -										
RW	63.59	95.71	98.88	134.74	24.58%	0.11	0.16	0.19	0.28	0.21%
Incineration	11.17	16.86	17.39	23.69	4.32%	11.50	16.04	20.05	28.93	22.11%
Recycling	181.34	287.61	286.08	390.75	71.10%	41.14	61.44	70.45	101.16	77.68%
		Flows	of TiO ₂ in S	witzerland			Flows of Ti	O ₂ in the U	nited Kingc	lom
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In to	nnes				In to	nnes		
Landfill -										
RW	0.00	0.00	0.00	0.00	0.00%	38.00	59.81	60.80	83.77	13.64%
Incineration	6.78	10.41	10.90	15.09	13.73%	29.27	44.56	46.87	64.58	10.51%
Recycling	42.69	64.89	68.45	94.73	86.27%	211.90	310.84	338.20	466.38	75.85%

	Flows of ZnO in Austria Flows of ZnO in Belgiu Q15 Mode Mean Q85 Mean TC Q15 Mode Mean Q85					in Belgiun	ı			
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In to	onnes		
Landfill -]									
RW	0.01	0.05	0.05	0.09	1.23%	0.00	0.01	0.01	0.02	0.18%
Incineration	0.04	0.37	0.36	0.67	9.54%	0.04	0.38	0.38	0.72	8.40%
Recycling	0.38	3.17	3.33	6.31	89.23%	0.47	3.84	4.15	7.85	91.42%
		Flov	vs of ZnO i	n Bulgar	ia		Flo	ows of ZnO	in Croatia	I
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In to	onnes		
Landfill -	0.05	0.21	0.55	1 1 1	14.96%	0.00	0.44	0.74	1 45	17.00%
RW	0.05	0.31	0.55	1.11	14.86%	0.08	0.44	0.74	1.45	17.88%
Incineration	0.00	0.00	0.00	0.00	0.06%	0.00	0.00	0.00	0.00	0.00%
Recycling	0.29	1.70	3.17	6.35	85.08%	0.34	2.16	3.40	6.68	82.12%
		Flo	ws of ZnO i	in Cypru	S		Flows	of ZnO in C	Czech Repu	ıblic
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То		In tor	nnes				In to	onnes		
Landfill -	0.04	0.10	0.44	0.00		0.1.6	1.00	1 41	2.60	10.000
RW	0.04	0.18	0.44	0.89	13.41%	0.16	1.09	1.41	2.69	19.68%
Incineration	0.00	0.00	0.00	0.00	0.00%	0.04	0.29	0.36	0.68	4.99%
Recycling	0.26	1.30	2.85	5.79	86.59%	0.60	4.50	5.40	10.30	75.33%
		Flow	ıs of ZnO ir	Denma	rk		Flo	ows of ZnO	in Estonia	l
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC
То]	In tor	nnes				In to	onnes		
Landfill -	0.05	0.0-	0.54	0.00		0.00	0.00	0.00	0.00	
RW	0.05	0.35	0.51	0.98	10.41%	0.00	0.00	0.00	0.00	2.32%
Incineration	0.02	0.13	0.20	0.39	4.06%	0.00	0.01	0.01	0.01	16.77%
Recycling	0.44	2.82	4.16	8.09	85.52%	0.00	0.02	0.03	0.06	80.90%

Modelling results – Fractions of ZnO ENM entering landfilling, incineration and recycling

	Flows of ZnO in Finland						Flows of ZnO in France				
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC	
То	In tonnes					In tonnes					
Landfill -											
RW	0.01	0.04	0.06	0.12	1.31%	0.19	1.58	1.69	3.21	5.97%	
Incineration	0.01	0.08	0.13	0.25	2.73%	0.26	2.17	2.28	4.33	8.03%	
Recycling	0.50	2.98	4.53	8.77	95.96%	2.77	22.77	24.37	46.43	85.99%	
		Flov	ws of ZnO i	n German	у	Flows of ZnO in Greece					
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC	
То		In to	onnes			In tonnes					
Landfill - RW	0.00	0.00	0.00	0.01	0.01%	0.15	1.04	1.27	2.40	15.69%	
Incineration	0.26	2.09	2.31	4.36	8.39%	0.00	0.00	0.00	0.00	0.00%	
Recycling	2.80	22.66	25.20	47.73	91.60%	0.77	5.06	6.83	13.02	84.31%	
		Flov	ws of ZnO i	n Hungar	у						
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC	
То	In tonnes					In tonnes					
Landfill - RW	0.09	0.58	0.90	1.76	20.89%	0.02	0.10	0.15	0.28	4.42%	
Incineration	0.02	0.09	0.16	0.32	3.75%	0.01	0.04	0.07	0.13	1.99%	
Recycling	0.32	2.02	3.25	6.37	75.36%	0.32	2.12	3.07	6.04	93.60%	
		F	lows of Zn	O in Italy			Fl				
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC	
То		In to	onnes			In tonnes					
Landfill -											
RW	0.20	1.45	1.73	3.25	5.05%	0.04	0.19	0.53	1.09	17.71%	
Incineration	0.19	1.43	1.69	3.18	4.94%	0.00	0.00	0.00	0.01	0.09%	
Recycling	3.45	26.10	30.73	58.09	90.01%	0.20	0.84	2.45	5.08	82.21%	

	Flows of ZnO in Lithuania						Flows of ZnO in Luxembourg				
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC	
То	In tonnes					In tonnes					
Landfill -											
RW	0.04	0.20	0.53	1.08	16.73%	0.00	0.01	0.03	0.06	1.01%	
Incineration	0.00	0.00	0.00	0.00	0.00%	0.01	0.03	0.12	0.26	4.41%	
Recycling	0.21	0.99	2.62	5.34	83.27%	0.18	0.68	2.64	5.55	94.58%	
	Flows of ZnO in Malta						Flows of ZnO in the Netherlands				
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC	
То	In tonnes						In to				
Landfill - RW	0.04	0.15	0.60	1.26	21.94%	0.00	0.01	0.01	0.02	0.18%	
Incineration	0.00	0.00	0.00	0.00	0.00%	0.06	0.46	0.54	1.02	10.75%	
Recycling	0.15	0.53	2.13	4.47	78.06%	0.49	4.36	4.46	8.47	89.07%	
, ,			ws of ZnO i	n Norwa	v		Flo				
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC	
То	In tonnes					In tonnes					
Landfill -											
RW	0.00	0.01	0.02	0.04	0.38%	0.19	1.52	1.75	3.32	14.16%	
Incineration	0.08	0.51	0.72	1.39	13.72%	0.01	0.10	0.12	0.23	0.99%	
Recycling	0.48	3.00	4.51	8.72	85.90%	1.15	8.60	10.47	19.82	84.85%	
		Flov	vs of ZnO ir	n Portug	al	Flows of ZnO in Romania				а	
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC	
То	In tonnes					In tonnes					
Landfill -											
RW	0.07	0.45	0.58	1.09	17.43%	0.11	0.74	1.09	2.11	22.84%	
Incineration	0.03	0.20	0.24	0.45	7.18%	0.00	0.00	0.01	0.01	0.16%	
Recycling	0.31	1.84	2.50	4.73	75.38%	0.38	2.60	3.67	7.14	77.00%	

	Flows of ZnO in the Slovakia						Flows of ZnO in Slovenia					
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC		
То		In to	onnes				In to					
Landfill -												
RW	0.09	0.79	0.91	1.74	14.20%	0.03	0.15	0.33	0.67	9.92%		
Incineration	0.02	0.13	0.15	0.28	2.32%	0.00	0.00	0.00	0.00	0.00%		
Recycling	0.55	4.34	5.33	10.27	83.48%	0.26	1.31	3.01	6.11	90.08%		
		FI	ows of ZnC) in Spain		Flows of ZnO in Sweden						
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC		
То		In to	onnes				In to					
Landfill -												
RW	0.69	5.58	6.47	12.31	20.96%	0.00	0.00	0.00	0.00	0.04%		
Incineration	0.12	1.02	1.11	2.11	3.61%	0.04	0.27	0.34	0.66	5.57%		
Recycling	2.41	19.09	23.27	44.31	75.42%	0.61	4.48	5.78	11.07	94.40%		
	Flows of ZnO in Switzerland						Flows of ZnO in the United Kingdom					
	Q15	Mode	Mean	Q85	Mean TC	Q15	Mode	Mean	Q85	Mean TC		
То	In tonnes					In tonnes						
Landfill -												
RW	0.00	0.00	0.00	0.00	0.00%	0.31	2.51	2.72	5.13	8.63%		
Incineration	0.03	0.24	0.27	0.51	5.60%	0.24	1.88	2.03	3.82	6.44%		
Recycling	0.52	4.39	4.51	8.55	94.40%	3.10	22.81	26.75	50.65	84.93%		